IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics030626192200770x.html
   My bibliography  Save this article

Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw

Author

Listed:
  • Ru Fang, Yan
  • Zhang, Silu
  • Zhou, Ziqiao
  • Shi, Wenjun
  • Hui Xie, Guang

Abstract

Bioenergy is recognized as a promising alternative for future energy demand and decarbonization development. Crop straw, especially wheat, rice, and maize straw, is one of the significant feedstocks for bioenergy production. However, the production potential of different types of bioenergy from crop straw, and its potential to reduce CO2 emissions are poorly understood. Thus, we collected crop straw utilization data at the provincial level via face-to-face field surveys to estimate straw quantity until 2030, dividing the 31 provincial regions in mainland China into four regions each for wheat (W-I, II, III, IV), rice (R-I, II, III, IV), and maize (M-I, II, III, IV), respectively, based on their quantity and distribution. The results show that if all three types of straw are used for bioenergy production, the bioenergy production potential is 75.1 Mtce for electricity, 151.5 Mtce for bioethanol, 182.1 Mtce for biomethane, and 329.1 Mtce for briquette fuel in 2030. Substituting electricity, bioethanol, biomethane, and briquette fuel for fossil fuels could reduce CO2 emissions by 562.9, 362.4, 220.4, and 1654.2 Mt, respectively. Our study indicates that wheat straw should be used for bioethanol and electricity production, maize straw for electricity and briquette fuel, and rice straw for biomethane. This research provides a good reference for local and national governments for policy formulation regarding straw utilization, and it will also help bioenergy plants select the best plant locations, bioenergy types, and feedstock types to obtain a high quantity of bioenergy and realize decarbonization development.

Suggested Citation

  • Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s030626192200770x
    DOI: 10.1016/j.apenergy.2022.119439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200770X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Caixia & Xie, Gaodi & Li, Shimei & Ge, Liqiang & He, Tingting, 2010. "The productive potentials of sweet sorghum ethanol in China," Applied Energy, Elsevier, vol. 87(7), pages 2360-2368, July.
    2. Vivian Scott & R. Stuart Haszeldine & Simon F. B. Tett & Andreas Oschlies, 2015. "Fossil fuels in a trillion tonne world," Nature Climate Change, Nature, vol. 5(5), pages 419-423, May.
    3. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    4. Goetz, Ariane & German, Laura & Hunsberger, Carol & Schmidt, Oscar, 2017. "Do no harm? Risk perceptions in national bioenergy policies and actual mitigation performance," Energy Policy, Elsevier, vol. 108(C), pages 776-790.
    5. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. S. Tao & M. Y. Ru & W. Du & X. Zhu & Q. R. Zhong & B. G. Li & G. F. Shen & X. L. Pan & W. J. Meng & Y. L. Chen & H. Z. Shen & N. Lin & S. Su & S. J. Zhuo & T. B. Huang & Y. Xu & X. Yun & J. F. Liu & X, 2018. "Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey," Nature Energy, Nature, vol. 3(7), pages 567-573, July.
    7. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    8. Yamamoto, Hiromi & Yamaji, Kenji & Fujino, Junichi, 2000. "Scenario analysis of bioenergy resources and CO2 emissions with a global land use and energy model," Applied Energy, Elsevier, vol. 66(4), pages 325-337, August.
    9. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Wang, Xiaoyu & Yang, Lu & Steinberger, Yosef & Liu, Zuxin & Liao, Shuhua & Xie, Guanghui, 2013. "Field crop residue estimate and availability for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 864-875.
    11. Monforti, F. & Lugato, E. & Motola, V. & Bodis, K. & Scarlat, N. & Dallemand, J.-F., 2015. "Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 519-529.
    12. Bundhoo, Zumar M.A. & Surroop, Dinesh, 2019. "Evaluation of the potential of bio-methane production from field-based crop residues in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Yang, Yang & Liang, Sai & Yang, Yi & Xie, Guang Hui & Zhao, Wei, 2022. "Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China," Applied Energy, Elsevier, vol. 305(C).
    14. Go, Alchris Woo & Conag, Angelique T., 2019. "Utilizing sugarcane leaves/straws as source of bioenergy in the Philippines: A case in the Visayas Region," Renewable Energy, Elsevier, vol. 132(C), pages 1230-1237.
    15. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    16. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    17. Feng, Tingting & Cheng, Shengkui & Min, Qingwen & Li, Wei, 2009. "Productive use of bioenergy for rural household in ecological fragile area, Panam County, Tibet in China: The case of the residential biogas model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2070-2078, October.
    18. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    19. Li, Qiang & Chen, Dingjiang & Zhu, Bing & Hu, Shanying, 2012. "Industrial straw utilization in China: Simulation and analysis of the dynamics of technology application and competition," Technology in Society, Elsevier, vol. 34(3), pages 207-215.
    20. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    21. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    22. Roberts, Justo José & Cassula, Agnelo Marotta & Osvaldo Prado, Pedro & Dias, Rubens Alves & Balestieri, José Antonio Perrella, 2015. "Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 568-583.
    23. Liu, Jin & Wu, Jianguo & Liu, Fengqiao & Han, Xingguo, 2012. "Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China," Applied Energy, Elsevier, vol. 93(C), pages 305-318.
    24. Said, N. & El-Shatoury, S.A. & Díaz, L.F. & Zamorano, M., 2013. "Quantitative appraisal of biomass resources and their energy potential in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 84-91.
    25. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    26. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Su, Zhanpeng & Li, Yang, 2021. "Economic analysis of different straw supply modes in China," Energy, Elsevier, vol. 237(C).
    27. Valdez-Vazquez, Idania & Acevedo-Benítez, Jorge A. & Hernández-Santiago, Cuitlahuac, 2010. "Distribution and potential of bioenergy resources from agricultural activities in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2147-2153, September.
    28. Townsend, T.J. & Sparkes, D.L. & Ramsden, S.J. & Glithero, N.J. & Wilson, P., 2018. "Wheat straw availability for bioenergy in England," Energy Policy, Elsevier, vol. 122(C), pages 349-357.
    29. Li, Xue & Mupondwa, Edmund & Panigrahi, Satya & Tabil, Lope & Sokhansanj, Shahab & Stumborg, Mark, 2012. "A review of agricultural crop residue supply in Canada for cellulosic ethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2954-2965.
    30. Jiang, Dong & Zhuang, Dafang & Fu, Jinying & Huang, Yaohuan & Wen, Kege, 2012. "Bioenergy potential from crop residues in China: Availability and distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1377-1382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yi-Jia & Wang, Qi & Wang, Naihui, 2023. "The role of rationality and altruism in rural households' acceptance of straw energy utilization: Evidence from Northeast China," Energy Policy, Elsevier, vol. 177(C).
    2. Tianheng Jiang & Maomao Wang & Wei Zhang & Cheng Zhu & Feijuan Wang, 2024. "A Comprehensive Analysis of Agricultural Non-Point Source Pollution in China: Current Status, Risk Assessment and Management Strategies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    3. Li, Xiaomin & Chen, Xi & Zhang, Chuxuan & Peng, Zhengkang & Gong, Xun, 2024. "PM10 emissions from co-combustion of water washed sea rice waste with coal," Applied Energy, Elsevier, vol. 356(C).
    4. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    5. Milana Treshcheva & Daria Kolbantseva & Irina Anikina & Dmitriy Treshchev & Konstantin Kalmykov & Iaroslav Vladimirov, 2023. "Efficiency of Using Heat Pumps in a Hydrogen Production Unit at Steam-Powered Thermal Power Plants," Sustainability, MDPI, vol. 15(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    3. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    6. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Lozano-García, Diego Fabián & Santibañez-Aguilar, José Ezequiel & Lozano, Francisco J. & Flores-Tlacuahuac, Antonio, 2020. "GIS-based modeling of residual biomass availability for energy and production in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    9. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Song, Junnian & Yang, Wei & Higano, Yoshiro & Wang, Xian’en, 2015. "Dynamic integrated assessment of bioenergy technologies for energy production utilizing agricultural residues: An input–output approach," Applied Energy, Elsevier, vol. 158(C), pages 178-189.
    11. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    12. Fengli Zhang & Chen Li & Yajie Yu & Dana M. Johnson, 2019. "Resources and Future Availability of Agricultural Biomass for Energy Use in Beijing," Energies, MDPI, vol. 12(10), pages 1-14, May.
    13. Yang, Lan & Wang, Xue-Chao & Dai, Min & Chen, Bin & Qiao, Yuanbo & Deng, Huijing & Zhang, Dingfan & Zhang, Yizhe & Villas Bôas de Almeida, Cecília Maria & Chiu, Anthony S.F. & Klemeš, Jiří Jaromír & W, 2021. "Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects," Energy, Elsevier, vol. 228(C).
    14. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    15. Gérard, Maxence & Jayet, Pierre-Alain, 2023. "European farmers’ response to crop residue prices and implications for bioenergy policies," Energy Policy, Elsevier, vol. 177(C).
    16. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    17. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    18. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    19. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    20. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s030626192200770x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.