IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v207y2007i2p85-98.html
   My bibliography  Save this article

Potential net effects of climate change on High Arctic Peary caribou: Lessons from a spatially explicit simulation model

Author

Listed:
  • Tews, Joerg
  • Ferguson, Michael A.D.
  • Fahrig, Lenore

Abstract

It is anticipated that climate change will have a major impact on High Arctic ecosystems. Peary caribou (Rangifer tarandus pearyi) is a caribou subspecies endemic to the Canadian High Arctic. In the past four decades, population dynamics of Peary caribou have been subject to several population die-offs due to unfavorable winter weather with ice coating on the ground or thicker-than-usual snow cover. There is general consensus that such disturbance years may increase in frequency and severity as a result of climate change. However, there is also evidence that available forage may increase due to a longer and warmer growing season. In this study we assess the net effects of climate change with a spatially explicit simulation model calibrated with data from the Bathurst Island complex (BIC) in the Canadian High Arctic. In particular, we ask under which climate change scenarios populations depart from the current conditions and either suffer or benefit from changes in the climate. The model incorporates movement of caribou groups and annual primary productivity over 100 years. Based on the model we suggest that Peary caribou may experience significantly lower population die-offs during disturbance years if biomass increases by 50% as projected within the next 100 years and if the currently estimated proportion of inaccessible caribou forage during such disturbance events does not change with climate change. However, if forage inaccessibility in poor winters increases by more than 30% over the next 100 years, caribou may experience negative net effects of climate change. This is the first comprehensive modeling study on this species and therefore of particular importance for wildlife management and local Inuit who rely on caribou as part of their culture, identity, and diet.

Suggested Citation

  • Tews, Joerg & Ferguson, Michael A.D. & Fahrig, Lenore, 2007. "Potential net effects of climate change on High Arctic Peary caribou: Lessons from a spatially explicit simulation model," Ecological Modelling, Elsevier, vol. 207(2), pages 85-98.
  • Handle: RePEc:eee:ecomod:v:207:y:2007:i:2:p:85-98
    DOI: 10.1016/j.ecolmodel.2007.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007002359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Megrey, Bernard A. & Rose, Kenneth A. & Ito, Shin-ichi & Hay, Douglas E. & Werner, Francisco E. & Yamanaka, Yasuhiro & Aita, Maki Noguchi, 2007. "North Pacific basin-scale differences in lower and higher trophic level marine ecosystem responses to climate impacts using a nutrient-phytoplankton–zooplankton model coupled to a fish bioenergetics m," Ecological Modelling, Elsevier, vol. 202(1), pages 196-210.
    2. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    3. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    4. Wilfried Thuiller & Miguel B. Araújo & Richard G. Pearson & Robert J. Whittaker & Lluís Brotons & Sandra Lavorel, 2004. "Uncertainty in predictions of extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    5. Lauren B. Buckley & Joan Roughgarden, 2004. "Effects of changes in climate and land use," Nature, Nature, vol. 430(6995), pages 34-34, July.
    6. J. Alan Pounds & Martín R. Bustamante & Luis A. Coloma & Jamie A. Consuegra & Michael P. L. Fogden & Pru N. Foster & Enrique La Marca & Karen L. Masters & Andrés Merino-Viteri & Robert Puschendorf & S, 2006. "Widespread amphibian extinctions from epidemic disease driven by global warming," Nature, Nature, vol. 439(7073), pages 161-167, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McRae, Brad H. & Schumaker, Nathan H. & McKane, Robert B. & Busing, Richard T. & Solomon, Allen M. & Burdick, Connie A., 2008. "A multi-model framework for simulating wildlife population response to land-use and climate change," Ecological Modelling, Elsevier, vol. 219(1), pages 77-91.
    2. Ling, Stephen & Milner-Gulland, E.J., 2008. "Developing an artificial ecology for use as a strategic management tool: A case study of ibex hunting in the North Tien Shan," Ecological Modelling, Elsevier, vol. 210(1), pages 15-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Kougioumoutzis & Alexandros Papanikolaou & Ioannis P. Kokkoris & Arne Strid & Panayotis Dimopoulos & Maria Panitsa, 2022. "Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    2. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    3. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    5. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    6. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    7. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    8. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    9. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.
    10. James I Watling & David N Bucklin & Carolina Speroterra & Laura A Brandt & Frank J Mazzotti & Stephanie S Romañach, 2013. "Validating Predictions from Climate Envelope Models," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.
    11. Kaushal, Kevin R. & Navrud, Ståle, 2018. "Global Biodiversity Costs of Climate Change. Improving the damage assessment of species loss in Integrated Assessment Models," Working Paper Series 4-2018, Norwegian University of Life Sciences, School of Economics and Business.
    12. Kim Meyer Hall & Heidi J. Albers & Majid Alkaee Taleghan & Thomas G. Dietterich, 2018. "Optimal Spatial-Dynamic Management of Stochastic Species Invasions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 403-427, June.
    13. Amintas Brandão Jr. & Lisa Rausch & América Paz Durán & Ciniro Costa Jr. & Seth A. Spawn & Holly K. Gibbs, 2020. "Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    14. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    15. Beaumont, Linda J. & Graham, Erin & Duursma, Daisy Englert & Wilson, Peter D. & Cabrelli, Abigail & Baumgartner, John B. & Hallgren, Willow & Esperón-Rodríguez, Manuel & Nipperess, David A. & Warren, , 2016. "Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?," Ecological Modelling, Elsevier, vol. 342(C), pages 135-146.
    16. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    17. Sébastien Bonthoux & Andrés Baselga & Gérard Balent, 2013. "Assessing Community-Level and Single-Species Models Predictions of Species Distributions and Assemblage Composition after 25 Years of Land Cover Change," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    18. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-8, April.
    19. Paavola, Jouni & Adger, W. Neil, 2006. "Fair adaptation to climate change," Ecological Economics, Elsevier, vol. 56(4), pages 594-609, April.
    20. Gössling, Stefan & Peeters, Paul & Ceron, Jean-Paul & Dubois, Ghislain & Patterson, Trista & Richardson, Robert B., 2005. "The eco-efficiency of tourism," Ecological Economics, Elsevier, vol. 54(4), pages 417-434, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:207:y:2007:i:2:p:85-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.