IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p558-d1080344.html
   My bibliography  Save this article

Physiological Changes and Yield Components of Safflower ( Carthamus tinctorius L.) Lines as a Function of Water Deficit and Recovery in the Flowering Phase

Author

Listed:
  • Marcelo de Almeida Silva

    (Laboratory of Ecophysiology Applied to Agriculture (LECA), School of Agricultural Sciences, UNESP—São Paulo State University, Botucatu 18610-034, SP, Brazil)

  • Hariane Luiz Santos

    (Laboratory of Ecophysiology Applied to Agriculture (LECA), School of Agricultural Sciences, UNESP—São Paulo State University, Botucatu 18610-034, SP, Brazil)

  • Lusiane de Sousa Ferreira

    (Laboratory of Ecophysiology Applied to Agriculture (LECA), School of Agricultural Sciences, UNESP—São Paulo State University, Botucatu 18610-034, SP, Brazil)

  • Dayane Mércia Ribeiro Silva

    (Laboratory of Ecophysiology Applied to Agriculture (LECA), School of Agricultural Sciences, UNESP—São Paulo State University, Botucatu 18610-034, SP, Brazil)

  • Jania Claudia Camilo dos Santos

    (Federal Institute of Alagoas—Campus Santana do Ipanema, Santana do Ipanema 57500-000, AL, Brazil)

  • Fernanda Pacheco de Almeida Prado Bortolheiro

    (Laboratory of Ecophysiology Applied to Agriculture (LECA), School of Agricultural Sciences, UNESP—São Paulo State University, Botucatu 18610-034, SP, Brazil)

Abstract

Since climate changes have caused water restrictions, safflower stands out as an alternative crop due to its adaptability to restrictive soil and climate conditions. Thus, this research aimed to evaluate the physiological and yield performance of four safflower lines (IMA 02, IMA 04, IMA 14, and IMA 21) under two water regimes [without water deficiency—around 22% soil moisture content—100% of field capacity (FC); and with water deficiency—50% of FC]. The water regimes were imposed for 30 days during the flowering phase, followed by rehydration for 20 days. Water deficiency decreased relative water content, water potential, photosynthetic pigment contents, photosynthetic performance, maximum variable and potential quantum yield of PSII, electron transport rate, and photochemical quenching. In contrast, it increased electrolyte leakage, water use efficiency, and non-photochemical quenching. The decreases in photochemical efficiency and photosynthetic performance as a function of water deficiency caused reductions in the number of capitula, 100-grain mass, and harvest index, with more significant reductions in IMA 02, which was considered susceptible to soil water changes. IMA 04, IMA 14, and IMA 21 were considered tolerant because their physiological variables and yield components were less affected by water restriction, and they also showed recovery after rehydration compared to IMA 02. Thus, these lines can be recommended for commercial use, and safflower breeding programs aiming to select superior genotypes under drought conditions.

Suggested Citation

  • Marcelo de Almeida Silva & Hariane Luiz Santos & Lusiane de Sousa Ferreira & Dayane Mércia Ribeiro Silva & Jania Claudia Camilo dos Santos & Fernanda Pacheco de Almeida Prado Bortolheiro, 2023. "Physiological Changes and Yield Components of Safflower ( Carthamus tinctorius L.) Lines as a Function of Water Deficit and Recovery in the Flowering Phase," Agriculture, MDPI, vol. 13(3), pages 1-21, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:558-:d:1080344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santos, Reginaldo Ferreira & Bassegio, Doglas & de Almeida Silva, Marcelo, 2017. "Productivity and production components of safflower genotypes affected by irrigation at phenological stages," Agricultural Water Management, Elsevier, vol. 186(C), pages 66-74.
    2. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan & Begna, Sultan & Auld, Dick, 2016. "Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains," Agricultural Water Management, Elsevier, vol. 163(C), pages 354-362.
    3. Lovelli, S. & Perniola, M. & Ferrara, A. & Di Tommaso, T., 2007. "Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 73-80, August.
    4. Shi, Jianchu & Yasuor, Hagai & Yermiyahu, Uri & Zuo, Qiang & Ben-Gal, Alon, 2014. "Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles," Agricultural Water Management, Elsevier, vol. 146(C), pages 163-172.
    5. Zanib Nazar & Nudrat Aisha Akram & Muhammad Hamzah Saleem & Muhammad Ashraf & Shakeel Ahmed & Shafaqat Ali & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni, 2020. "Glycinebetaine-Induced Alteration in Gaseous Exchange Capacity and Osmoprotective Phenomena in Safflower ( Carthamus tinctorius L.) under Water Deficit Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    6. Mathobo, Rudzani & Marais, Diana & Steyn, Joachim Martin, 2017. "The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 180(PA), pages 118-125.
    7. Sun, Caixia & Gao, Xiaoxiao & Chen, Xing & Fu, Jianqi & Zhang, Yulan, 2016. "Metabolic and growth responses of maize to successive drought and re-watering cycles," Agricultural Water Management, Elsevier, vol. 172(C), pages 62-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    2. Santos, Reginaldo Ferreira & Bassegio, Doglas & de Almeida Silva, Marcelo, 2017. "Productivity and production components of safflower genotypes affected by irrigation at phenological stages," Agricultural Water Management, Elsevier, vol. 186(C), pages 66-74.
    3. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    4. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    5. Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Istanbulluoglu, Ahmet, 2009. "Effects of irrigation regimes on yield and water productivity of safflower (Carthamus tinctorius L.) under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 96(12), pages 1792-1798, December.
    7. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    8. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    9. Sanches, Matilde & Sampaio, Ana Margarida & Araújo, Susana & van Eeuwijk, Fred & Van Breusegem, Frank & Vaz Patto, M. Carlota, 2024. "Grass pea (Lathyrus sativus) interesting panoply of mechanisms to cope with contrasting water stress conditions – a controlled study of sub populational differences in a worldwide collection of access," Agricultural Water Management, Elsevier, vol. 292(C).
    10. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Salvatore La Bella & Giuseppe Virga & Nicolò Iacuzzi & Mario Licata & Leo Sabatino & Beppe Benedetto Consentino & Claudio Leto & Teresa Tuttolomondo, 2020. "Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary ( Rosmarinus officinalis L.) Biotypes Grown in Pot," Agriculture, MDPI, vol. 11(1), pages 1-15, December.
    12. Bhattarai, Bishwoyog & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Saini, Rupinder & Auld, Dick, 2020. "Spring safflower water use patterns in response to preseason and in-season irrigation applications," Agricultural Water Management, Elsevier, vol. 228(C).
    13. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    14. Pan, Zhanpeng & Tong, Yu & Hou, Jingming & Zheng, Jian & Kang, Yongde & Wang, Yan & Cao, Changchong, 2021. "Hole irrigation process simulation using a soil water dynamical model with parameter inversion method," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Conrad Baker & Albert Thembinkosi Modi & Adornis D. Nciizah, 2021. "Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    16. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    17. Muhammad Adeel Ghafar & Nudrat Aisha Akram & Muhammad Hamzah Saleem & Jianyong Wang & Leonard Wijaya & Mohammed Nasser Alyemeni, 2021. "Ecotypic Morphological and Physio-Biochemical Responses of Two Differentially Adapted Forage Grasses, Cenchrus ciliaris L. and Cyperus arenarius Retz. to Drought Stress," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    18. Wu, Xun & Zuo, Qiang & Shi, Jianchu & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2020. "Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model," Agricultural Water Management, Elsevier, vol. 240(C).
    19. Xinchao Ma & Zhanming Tan & Yunxia Cheng & Tingting Wang & Man Cao & Zhengying Xuan & Hongbin Du, 2024. "Water-Nutrient Coupling Strategies That Improve the Carbon, Nitrogen Metabolism, and Yield of Cucumber under Sandy Cultivated Land," Land, MDPI, vol. 13(7), pages 1-16, June.
    20. Pirzad, Alireza & Mohammadzadeh, Sevil, 2018. "Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris)," Agricultural Water Management, Elsevier, vol. 204(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:558-:d:1080344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.