IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i8p1307-1316.html
   My bibliography  Save this article

Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes

Author

Listed:
  • Karam, F.
  • Saliba, R.
  • Skaf, S.
  • Breidy, J.
  • Rouphael, Y.
  • Balendonck, J.

Abstract

Field experiments were conducted in 2008 and 2009 to determine the effects of deficit irrigation on yield and water use of field grown eggplants. A total of 8 irrigation treatments (four each year), which received different amounts of irrigation water, were evaluated. In 2008, deficit irrigation was applied at full vegetative growth (WS-V), pre-flowering (WS-F) and fruit ripening (WS-R), while in 2009 deficit irrigation was applied during the whole growing season at 80 (WS-80), 60 (WS-60) and 40% (WS-40) of field capacity. Deficit-irrigated treatments were in both years compared to a well irrigated control. Regular readings of soil water content (SWC) in 2008 and 2009 showed that average soil water deficit (SWD) in the control was around 30% of total available water (TAW) while in deficit-irrigated treatments it varied between 50 and 75% of TAW. In 2008, deficit irrigation reduced fruit fresh yield by 35, 25 and 33% in WS-V, WS-F and WS-R treatments, respectively, when compared to the control (33.0 t ha-1). However, the reduction in fresh yield in response to deficit irrigation was compensated by an increase in fruit mean weight. Results obtained in 2009 showed that fruit fresh yield in the control was 33.7 t ha-1, while it was 12, 39 and 60% less in WS-80, WS-60 and WS-40 treatments, respectively. On the other hand, fruit dry matter content and water productivity were found to increase significantly in both years in deficit-irrigated treatments. Applying deficit irrigation for 2 weeks prior to flowering (WS-F) resulted in water saving of the same magnitude of the WS-80 treatment, with the least yield reduction, making more water available to irrigate other crops, and thereby considered optimal strategies for drip-irrigated eggplants in the semi-arid climate of the central Bekaa Valley of Lebanon.

Suggested Citation

  • Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:8:p:1307-1316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411000655
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Karam, Fadi & Masaad, Randa & Sfeir, Therese & Mounzer, Oussama & Rouphael, Youssef, 2005. "Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 75(3), pages 226-244, July.
    3. World Bank, 2006. "Reengaging in Agricultural Water Management: Challenges and Options," World Bank Publications - Books, The World Bank Group, number 6957.
    4. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Daccache, Andre & Mounzer, Oussama & Rouphael, Youssef, 2006. "Water use and lint yield response of drip irrigated cotton to the length of irrigation season," Agricultural Water Management, Elsevier, vol. 85(3), pages 287-295, October.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Molden, D. & Murray-Rust, H. & Sakthivadivel, R. & Makin, I., 2003. "A water-productivity framework for understanding and action," IWMI Books, Reports H032632, International Water Management Institute.
    7. Lovelli, S. & Perniola, M. & Ferrara, A. & Di Tommaso, T., 2007. "Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 73-80, August.
    8. Chartzoulakis, K. & Drosos, N., 1995. "Water use and yield of greenhouse grown eggplant under drip irrigation," Agricultural Water Management, Elsevier, vol. 28(2), pages 113-120, September.
    9. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    10. Ramalan, A. A. & Nwokeocha, C. U., 2000. "Effects of furrow irrigation methods, mulching and soil water suction on the growth, yield and water use efficiency of tomato in the Nigerian Savanna," Agricultural Water Management, Elsevier, vol. 45(3), pages 317-330, August.
    11. Shrestha, Nirman & Geerts, Sam & Raes, Dirk & Horemans, Stefaan & Soentjens, Sarah & Maupas, Fabienne & Clouet, Philippe, 2010. "Yield response of sugar beets to water stress under Western European conditions," Agricultural Water Management, Elsevier, vol. 97(2), pages 346-350, February.
    12. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    13. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    14. Madramootoo, Chandra A. & Rigby, Marion, 1991. "Effects of trickle irrigation on the growth and sunscald of bell peppers (Capsicum annuum L.) in southern Quebec," Agricultural Water Management, Elsevier, vol. 19(2), pages 181-189, March.
    15. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    2. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Dalvi, S.G. & Rane, J. & Reddy, K. Sammi, 2023. "Pod quality, yields responses and water productivity of okra (Abelmoschus esculentus L.) as affected by plant growth regulators and deficit irrigation," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    4. Nadiyah M. Alabdallah & Md. Mahadi Hasan & Abdalrhaman M. Salih & S.S. Roushdy & Aisha S. Al-Shammari & Sumayah I. Alsanie & Mohamed El-Zaidy, 2021. "Silver nanoparticles improve growth and protect against oxidative damage in eggplant seedlings under drought stress," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(11), pages 617-624.
    5. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    3. Bluemling, Bettina & Yang, Hong & Pahl-Wostl, Claudia, 2007. "Making water productivity operational--A concept of agricultural water productivity exemplified at a wheat-maize cropping pattern in the North China plain," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 11-23, July.
    4. Pascual, Miquel & Villar, Josep M. & Rufat, Josep, 2016. "Water use efficiency in peach trees over a four-years experiment on the effects of irrigation and nitrogen application," Agricultural Water Management, Elsevier, vol. 164(P2), pages 253-266.
    5. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    6. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    7. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    8. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    9. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    10. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    11. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    12. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    13. U. Behera & P. Panigrahi & A. Sarangi, 2012. "Multiple Water Use Protocols in Integrated Farming System for Enhancing Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2605-2623, July.
    14. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    15. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    16. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    17. van der Kooij, Saskia & Zwarteveen, Margreet & Boesveld, Harm & Kuper, Marcel, 2013. "The efficiency of drip irrigation unpacked," Agricultural Water Management, Elsevier, vol. 123(C), pages 103-110.
    18. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    19. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    20. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:8:p:1307-1316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.