IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp54-65.html
   My bibliography  Save this article

Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds

Author

Listed:
  • Müller, T.
  • Ranquet Bouleau, C.
  • Perona, P.

Abstract

Field experiments were combined with a numerical model to optimize drip irrigation management based on soil matric potential (SMP) measurements. An experimental crop of eggplant was grown in Burkina Faso from December 2014 to March 2015 and plant response to water stress was investigated by applying four different irrigation treatments. Treatments consisted in using two different irrigation depths (low or high), combined with a water provision of 150%, 100% or 66% (150/100/66) of the maximum crop evapotranspiration (T150low, T66low, T100high, T66high). Soil matric potential measurements at 5, 10 and 15cm depth were taken using a wireless sensor network and were compared with measurements of plant and root biomass and crop yields. Field data were used to calibrate a numerical model to simulate triggered drip irrigation. Different simulations were built using the software HYDRUS 2D/3D to analyze the impact of the irrigation depth and frequency, the irrigation threshold and the soil texture on plant transpiration and water losses. Numerical results highlighted the great impact of the root distribution on the soil water dynamics and the importance of the sensor location to define thresholds. A fixed optimal sensor depth of 10 cm was found to manage irrigation from the vegetative state to the end of fruit development. Thresholds were defined to minimize water losses while allowing a sufficient soil water availability for optimal crop production. A threshold at 10cm depth of −15kPa is recommended for the early growth stage and −40kPa during the fruit formation and maturation phase. Simulations showed that those thresholds resulted in optimal transpiration regardless of the soil texture so that this management system can constitute the basis of an irrigation schedule for eggplant crops and possibly other vegetable crops in semi-arid regions.

Suggested Citation

  • Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:54-65
    DOI: 10.1016/j.agwat.2016.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lovelli, S. & Perniola, M. & Ferrara, A. & Di Tommaso, T., 2007. "Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 73-80, August.
    2. Wang, Dan & Kang, Yaohu & Wan, Shuqin, 2007. "Effect of soil matric potential on tomato yield and water use under drip irrigation condition," Agricultural Water Management, Elsevier, vol. 87(2), pages 180-186, January.
    3. Zotarelli, L. & Dukes, M.D. & Scholberg, J.M.S. & Muñoz-Carpena, R. & Icerman, J., 2009. "Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(8), pages 1247-1258, August.
    4. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    5. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    6. Dabach, Sharon & Shani, Uri & Lazarovitch, Naftali, 2015. "Optimal tensiometer placement for high-frequency subsurface drip irrigation management in heterogeneous soils," Agricultural Water Management, Elsevier, vol. 152(C), pages 91-98.
    7. Zotarelli, Lincoln & Scholberg, Johannes M. & Dukes, Michael D. & Muñoz-Carpena, Rafael & Icerman, Jason, 2009. "Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(1), pages 23-34, January.
    8. Liu, Haijun & Yang, Huiying & Zheng, Jianhua & Jia, Dongdong & Wang, Jun & Li, Yan & Huang, Guanhua, 2012. "Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China," Agricultural Water Management, Elsevier, vol. 115(C), pages 232-241.
    9. Zheng, Jianhua & Huang, Guanhua & Jia, Dongdong & Wang, Jun & Mota, Mariana & Pereira, Luis S. & Huang, Quanzhong & Xu, Xu & Liu, Haijun, 2013. "Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 129(C), pages 181-193.
    10. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 147-158, March.
    11. Mermoud, A. & Tamini, T.D. & Yacouba, H., 2005. "Impacts of different irrigation schedules on the water balance components of an onion crop in a semi-arid zone," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 282-295, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, You-Liang & Wang, Feng-Xin & Shock, Clinton Cleon & Yang, Kai-Jing & Kang, Shao-Zhong & Qin, Jing-Tao & Li, Si-En, 2017. "Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 160-171.
    2. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    3. Gabriela Tejada & Marina Cracco & Clémence Ranquet Bouleau & Jean-Claude Bolay & Silvia Hostettler, 2019. "Testing Analytical Frameworks in Transdisciplinary Research for Sustainable Development," Sustainability, MDPI, vol. 11(16), pages 1-28, August.
    4. Chen, Shichao & Du, Taisheng & Wang, Sufen & Parsons, David & Wu, Di & Guo, Xiuwei & Li, Donghao, 2021. "Quantifying the effects of spatial-temporal variability of soil properties on crop growth in management zones within an irrigated maize field in Northwest China," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Jiao, Maqian & Yang, Wenhan & Hu, Wei & Clothier, Brent & Zou, Songyan & Li, Doudou & Di, Nan & Liu, Jinqiang & Liu, Yang & Duan, Jie & Xi, Benye, 2021. "The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 253(C).
    6. Cecilia M. Onyango & Justine M. Nyaga & Johanna Wetterlind & Mats Söderström & Kristin Piikki, 2021. "Precision Agriculture for Resource Use Efficiency in Smallholder Farming Systems in Sub-Saharan Africa: A Systematic Review," Sustainability, MDPI, vol. 13(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Contreras, J.I. & Alonso, F. & Cánovas, G. & Baeza, R., 2017. "Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects," Agricultural Water Management, Elsevier, vol. 183(C), pages 26-34.
    2. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    3. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    4. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    6. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    7. Zheng, Jianhua & Huang, Guanhua & Jia, Dongdong & Wang, Jun & Mota, Mariana & Pereira, Luis S. & Huang, Quanzhong & Xu, Xu & Liu, Haijun, 2013. "Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 129(C), pages 181-193.
    8. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).
    9. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    10. Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
    11. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    12. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    13. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Migliaccio, Kati W. & Schaffer, Bruce & Crane, Jonathan H. & Davies, Frederick S., 2010. "Plant response to evapotranspiration and soil water sensor irrigation scheduling methods for papaya production in south Florida," Agricultural Water Management, Elsevier, vol. 97(10), pages 1452-1460, October.
    16. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    17. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    18. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    19. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    20. Cardenas-Lailhacar, B. & Dukes, M.D., 2010. "Precision of soil moisture sensor irrigation controllers under field conditions," Agricultural Water Management, Elsevier, vol. 97(5), pages 666-672, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:54-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.