IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v204y2018icp1-10.html
   My bibliography  Save this article

Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris)

Author

Listed:
  • Pirzad, Alireza
  • Mohammadzadeh, Sevil

Abstract

As a mechanism of plants to adapt to soil water deficits, promotion of water use efficiency has been the focus of strategies to increase crop tolerance to drought. Probable improvement of arbuscular mycorrhizal fungi (Funnelliformis mosseae or Rhizophagus irregularis) for the essential oil and biological yield of watered and rainfed host plants (lavender, rosemary and thyme) are the main aim of this study. Physiological responses of the host plants to inoculation with two species of fungi were evaluated under different irrigation regimes (irrigation at 75 and 50% of field capacity, and rainfed). A factorial (two factors) experiment was conducted for two years (2015–2016) based on a randomized complete block design with three replications at Urmia University. Inoculation with these root symbionts increased the colonization of the plants as compared to non-inoculated plants. The seedlings inoculated with fungi and subjected to water stress had more successful colonization. Stress reduced biological yield of inoculated and non- inoculated plants. Drought-induced reduction of biomass was significantly compensated for by mycorrhizal fungi. The highest essential oil percentage was obtained in rainfed condition. Since water use efficiency is affected by economic performance and volume of used water in different years, the results were variable. Increasing irrigation intervals can help the plants to adapt to water stress and prevent significant reduction in water use efficiency. However, in general, this study showed that inoculation with fungi is effective in alleviating adverse effects of water stress.

Suggested Citation

  • Pirzad, Alireza & Mohammadzadeh, Sevil, 2018. "Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris)," Agricultural Water Management, Elsevier, vol. 204(C), pages 1-10.
  • Handle: RePEc:eee:agiwat:v:204:y:2018:i:c:p:1-10
    DOI: 10.1016/j.agwat.2018.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741830180X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gholamhoseini, M. & Ghalavand, A. & Dolatabadian, A. & Jamshidi, E. & Khodaei-Joghan, A., 2013. "Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress," Agricultural Water Management, Elsevier, vol. 117(C), pages 106-114.
    2. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.
    3. Guillermo E. Ponce-Campos & M. Susan Moran & Alfredo Huete & Yongguang Zhang & Cynthia Bresloff & Travis E. Huxman & Derek Eamus & David D. Bosch & Anthony R. Buda & Stacey A. Gunter & Tamara Heartsil, 2013. "Ecosystem resilience despite large-scale altered hydroclimatic conditions," Nature, Nature, vol. 494(7437), pages 349-352, February.
    4. Travis E. Huxman & Melinda D. Smith & Philip A. Fay & Alan K. Knapp & M. Rebecca Shaw & Michael E. Loik & Stanley D. Smith & David T. Tissue & John C. Zak & Jake F. Weltzin & William T. Pockman & Osva, 2004. "Convergence across biomes to a common rain-use efficiency," Nature, Nature, vol. 429(6992), pages 651-654, June.
    5. Mathobo, Rudzani & Marais, Diana & Steyn, Joachim Martin, 2017. "The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 180(PA), pages 118-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadi, Mahmood & Modarres-Sanavy, Seyed Ali Mohammad & Heidarzadeh, Ali & Pirdashti, Hemmatolah & Tahmasebi-Sarvestani, Zeinolabedin & Zand, Behnam, 2024. "Interactive effects of mycorrhizal, Azospirillum and nitrogen+phosphorus with limited irrigation on yield and morpho-physiological traits of evening primrose (Oenothera biennis L.) in arid and semi-ar," Agricultural Water Management, Elsevier, vol. 301(C).
    2. Gheorghe Cristian Popescu & Monica Popescu, 2022. "Role of Combined Inoculation with Arbuscular Mycorrhizal Fungi, as a Sustainable Tool, for Stimulating the Growth, Physiological Processes, and Flowering Performance of Lavender," Sustainability, MDPI, vol. 14(2), pages 1-13, January.
    3. Jalil Sheshbahreh, Marziyeh & Movahhedi Dehnavi, Mohsen & Salehi, Amin & Bahreininejad, Babak, 2019. "Effect of irrigation regimes and nitrogen sources on biomass production, water and nitrogen use efficiency and nutrients uptake in coneflower (Echinacea purpurea L.)," Agricultural Water Management, Elsevier, vol. 213(C), pages 358-367.
    4. Salvatore La Bella & Giuseppe Virga & Nicolò Iacuzzi & Mario Licata & Leo Sabatino & Beppe Benedetto Consentino & Claudio Leto & Teresa Tuttolomondo, 2020. "Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary ( Rosmarinus officinalis L.) Biotypes Grown in Pot," Agriculture, MDPI, vol. 11(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shulin Chen & Zhenghao Zhu & Xiaotong Liu & Li Yang, 2022. "Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    2. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    4. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr, 2017. "Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 29-35.
    5. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.
    6. Mukherjee, Subham & Nandi, Ramprosad & Kundu, Arnab & Bandyopadhyay, Prasanta Kumar & Nalia, Arpita & Ghatak, Priyanka & Nath, Rajib, 2022. "Soil water stress and physiological responses of chickpea (Cicer arietinum L.) subject to tillage and irrigation management in lower Gangetic plain," Agricultural Water Management, Elsevier, vol. 263(C).
    7. Jalil Sheshbahreh, Marziyeh & Movahhedi Dehnavi, Mohsen & Salehi, Amin & Bahreininejad, Babak, 2019. "Effect of irrigation regimes and nitrogen sources on biomass production, water and nitrogen use efficiency and nutrients uptake in coneflower (Echinacea purpurea L.)," Agricultural Water Management, Elsevier, vol. 213(C), pages 358-367.
    8. Nandi, R. & Mukherjee, S. & Bandyopadhyay, P.K. & Saha, M. & Singh, K.C. & Ghatak, P. & Kundu, A. & Saha, S. & Nath, R. & Chakraborti, P., 2023. "Assessment and mitigation of soil water stress of rainfed lentil (Lens culinaries Medik) through sowing time, tillage and potassic fertilization disparities," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    10. Hazrati, Saeid & Tahmasebi-Sarvestani, Zeinolabedin & Mokhtassi-Bidgoli, Ali & Modarres-Sanavy, Seyed Ali Mohammad & Mohammadi, Hamid & Nicola, Silvana, 2017. "Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L," Agricultural Water Management, Elsevier, vol. 181(C), pages 66-72.
    11. Samira Ould Amer & Toufik Aliat & Dmitry E. Kucher & Oussama A. Bensaci & Nazih Y. Rebouh, 2023. "Investigating the Potential of Arbuscular Mycorrhizal Fungi in Mitigating Water Deficit Effects on Durum Wheat ( Triticum durum Desf.)," Agriculture, MDPI, vol. 13(3), pages 1-16, February.
    12. Abhijit Rai & Vivek Sharma & Jim Heitholt, 2020. "Dry Bean [ Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate," Sustainability, MDPI, vol. 12(9), pages 1-25, May.
    13. Klem, Karel & Záhora, Jaroslav & Zemek, František & Trunda, Petr & Tůma, Ivan & Novotná, Kateřina & Hodaňová, Petra & Rapantová, Barbora & Hanuš, Jan & Vavříková, Jana & Holub, Petr, 2018. "Interactive effects of water deficit and nitrogen nutrition on winter wheat. Remote sensing methods for their detection," Agricultural Water Management, Elsevier, vol. 210(C), pages 171-184.
    14. Mathobo, Rudzani & Marais, Diana & Steyn, Joachim Martin, 2018. "Calibration and validation of the SWB model for dry beans (Phaseolus vulgaris L.) at different drought stress levels," Agricultural Water Management, Elsevier, vol. 202(C), pages 113-121.
    15. Mengying Li & Liqun Cai, 2021. "Biochar and Arbuscular Mycorrhizal Fungi Play Different Roles in Enabling Maize to Uptake Phosphorus," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    16. Galvão, Ícaro Monteiro & dos Santos, Osvaldir Feliciano & de Souza, Mara Lúcia Cruz & de Jesus Guimarães, João & Kühn, Irineu Eduardo & Broetto, Fernando, 2019. "Biostimulants action in common bean crop submitted to water deficit," Agricultural Water Management, Elsevier, vol. 225(C).
    17. Marcelo de Almeida Silva & Hariane Luiz Santos & Lusiane de Sousa Ferreira & Dayane Mércia Ribeiro Silva & Jania Claudia Camilo dos Santos & Fernanda Pacheco de Almeida Prado Bortolheiro, 2023. "Physiological Changes and Yield Components of Safflower ( Carthamus tinctorius L.) Lines as a Function of Water Deficit and Recovery in the Flowering Phase," Agriculture, MDPI, vol. 13(3), pages 1-21, February.
    18. Zhang, Cong & Chen, Jie & Hu, Kelin & He, Yong, 2024. "Enhancing wheat protein through low-water-fertility under climate change without yield penalty," Agricultural Water Management, Elsevier, vol. 300(C).
    19. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    20. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:204:y:2018:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.