IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v245y2021ics0378377420320898.html
   My bibliography  Save this article

Hole irrigation process simulation using a soil water dynamical model with parameter inversion method

Author

Listed:
  • Pan, Zhanpeng
  • Tong, Yu
  • Hou, Jingming
  • Zheng, Jian
  • Kang, Yongde
  • Wang, Yan
  • Cao, Changchong

Abstract

Soil water dynamics are an important part of agricultural irrigation evaluation standards; therefore, supplying water efficiently has become the focus of agricultural water-saving research, and different soil water movement models have been developed for various water supply models. In this work, a parameter inversion model is coupled with the soil water movement equation (the Richards equation) based on the main variable of the head (h)-based Richards equation to investigate the dynamics of soil moisture under hole irrigation. A mathematical model for hole irrigation with two hole diameters (5 cm or 7 cm) and two hole numbers (one or two) was constructed after verifying the model with field-scale soil water content data from different soil profile depths. The Richards equation based on the Gauss–Newton parameter inversion method was found to accurately simulate the soil moisture dynamics under hole irrigation (R2>0.9). The difference in the water content of the soil profile due to the difference in hole diameter did not exceed 2.7%, and the soil water content under single-hole irrigation was significantly higher than that under double-hole irrigation due to lower evaporation. The infiltration distance of the wetting front under single-hole irrigation, which was mainly distributed on the hole side of the planting ridge, was greater than that under double-hole irrigation at 378 ml irrigation water per plant, and the soil moisture was unevenly distributed at a certain depth. However, the wetting fronts under double-hole irrigation intersected and began to infiltrate the soil evenly within a short time (only 6% of the entire irrigation cycle). The results for wetting front movement under the different hole settings show that double-hole irrigation does not stimulate crop root growth on both sides of the plant in the long term; however, this growth pattern can be stimulated by alternating single-hole irrigation.

Suggested Citation

  • Pan, Zhanpeng & Tong, Yu & Hou, Jingming & Zheng, Jian & Kang, Yongde & Wang, Yan & Cao, Changchong, 2021. "Hole irrigation process simulation using a soil water dynamical model with parameter inversion method," Agricultural Water Management, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420320898
    DOI: 10.1016/j.agwat.2020.106542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420320898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lovelli, S. & Perniola, M. & Ferrara, A. & Di Tommaso, T., 2007. "Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 73-80, August.
    2. Virginia Strati & Matteo Albéri & Stefano Anconelli & Marica Baldoncini & Marco Bittelli & Carlo Bottardi & Enrico Chiarelli & Barbara Fabbri & Vincenzo Guidi & Kassandra Giulia Cristina Raptis & Dome, 2018. "Modelling Soil Water Content in a Tomato Field: Proximal Gamma Ray Spectroscopy and Soil–Crop System Models," Agriculture, MDPI, vol. 8(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donglai Li & Jingming Hou & Yangwei Zhang & Minpeng Guo & Dawei Zhang, 2022. "Influence of Time Step Synchronization on Urban Rainfall-Runoff Simulation in a Hybrid CPU/GPU 1D-2D Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3417-3433, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    2. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    3. Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Santos, Reginaldo Ferreira & Bassegio, Doglas & de Almeida Silva, Marcelo, 2017. "Productivity and production components of safflower genotypes affected by irrigation at phenological stages," Agricultural Water Management, Elsevier, vol. 186(C), pages 66-74.
    5. Istanbulluoglu, Ahmet, 2009. "Effects of irrigation regimes on yield and water productivity of safflower (Carthamus tinctorius L.) under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 96(12), pages 1792-1798, December.
    6. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    7. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    8. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    9. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    10. Gao, Xiaoyu & Bai, Yining & Huo, Zailin & Xu, Xu & Huang, Guanhua & Xia, Yuhong & Steenhuis, Tammo S., 2017. "Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area," Agricultural Water Management, Elsevier, vol. 185(C), pages 116-125.
    11. Wani, Suhas P. & Anantha, K.H. & Garg, Kaushal K., 2017. "Soil Properties, Crop Yield, and Economics Under Integrated Crop Management Practices in Karnataka, Southern India," World Development, Elsevier, vol. 93(C), pages 43-61.
    12. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    13. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    14. Shahrokhnia, Mohammad Hossein & Sepaskhah, Ali Reza, 2016. "Effects of irrigation strategies, planting methods and nitrogen fertilization on yield, water and nitrogen efficiencies of safflower," Agricultural Water Management, Elsevier, vol. 172(C), pages 18-30.
    15. Shrestha, Nirman & Geerts, Sam & Raes, Dirk & Horemans, Stefaan & Soentjens, Sarah & Maupas, Fabienne & Clouet, Philippe, 2010. "Yield response of sugar beets to water stress under Western European conditions," Agricultural Water Management, Elsevier, vol. 97(2), pages 346-350, February.
    16. Shi Qinglan & Shi Yujiao & Liu Xiaochen & Mei Shuli & Feng Lei, 2020. "A high-sensitivity multilayer soil moisture monitoring sensor based on a double high-frequency tuning detection circuit," International Journal of Distributed Sensor Networks, , vol. 16(2), pages 15501477209, February.
    17. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    18. Ange-Lionel Toba & Liam Boire & Timothy McJunkin, 2021. "Integrated Water-Power System Resilience Analysis in a Southeastern Idaho Irrigation District: Minidoka Case Study," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    19. Ghamarnia, Houshang & Gholamian, Mohsen, 2013. "The effect of saline shallow ground and surface water under deficit irrigation on (Carthamus tinctorius L.) in semi arid condition," Agricultural Water Management, Elsevier, vol. 118(C), pages 29-37.
    20. Istanbulluoglu, A. & Gocmen, E. & Gezer, E. & Pasa, C. & Konukcu, F., 2009. "Effects of water stress at different development stages on yield and water productivity of winter and summer safflower (Carthamus tinctorius L.)," Agricultural Water Management, Elsevier, vol. 96(10), pages 1429-1434, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420320898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.