IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12328-d674568.html
   My bibliography  Save this article

Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area

Author

Listed:
  • Conrad Baker

    (Crop Science, School of Agricultural, Earth and Environmental Science, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa)

  • Albert Thembinkosi Modi

    (Crop Science, School of Agricultural, Earth and Environmental Science, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa)

  • Adornis D. Nciizah

    (Agricultural Research Council―Soil, Climate and Water, Pretoria 0083, South Africa)

Abstract

A better understanding of the dry bean ( Phaseolus vulgaris L.) growth and yield response to weed competition under the intercropping system is critical for improving sustainable weed management strategies. A two-year trial was conducted with three types of crop arrangement (sole cropping, inter-row, and intra-row intercropping) combined with weeding frequency (no weeding, weeding over the first 50 days of crop growth, and weed-free). Effects of the treatments were tested on dry bean agronomic indicators in terms of the following: 100-grain weight, dry biomass, grain yield, grains per pod, pods per plant, plant height, number of leaves per plant, and chlorophyll content. The intercropping pattern significantly affected dry bean pods per plant, height, and chlorophyll content, while weeding frequency significantly affected all measured agronomic indicators for dry bean, except for chlorophyll content, during the 2017/18 growing season. The results showed that the significant measured agronomic indicators were the lowest under no weed control; however, they increased as weeding frequency increased. The 2018/19 growing season followed a similar trend; however, the interaction effect significantly affected dry bean 100-grain weight, dry biomass, and number of leaves per plant at 40 days after emergence. The dry bean/sweet sorghum or cowpea intra-row intercropping and intermediate weeding frequency displayed optimum productivity.

Suggested Citation

  • Conrad Baker & Albert Thembinkosi Modi & Adornis D. Nciizah, 2021. "Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12328-:d:674568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eliakira Kisetu Nassary & Frederick Baijukya & Patrick Alois Ndakidemi, 2020. "Assessing the Productivity of Common Bean in Intercrop with Maize across Agro-Ecological Zones of Smallholder Farms in the Northern Highlands of Tanzania," Agriculture, MDPI, vol. 10(4), pages 1-15, April.
    2. Miguel A. Altieri & Clara I. Nicholls & Rene Montalba, 2017. "Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective," Sustainability, MDPI, vol. 9(3), pages 1-13, February.
    3. Rosa-Schleich, Julia & Loos, Jacqueline & Mußhoff, Oliver & Tscharntke, Teja, 2019. "Ecological-economic trade-offs of Diversified Farming Systems – A review," Ecological Economics, Elsevier, vol. 160(C), pages 251-263.
    4. Mathobo, Rudzani & Marais, Diana & Steyn, Joachim Martin, 2017. "The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 180(PA), pages 118-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Jabbar & Asif Iqbal & Muhammad Aamir Iqbal & Umer Ayaz Aslam Sheikh & Junaid Rahim & Sadaf Khalid & Rehab M. Hafez & Anees-ul-Husnain Shah & Aftab Ahmad Khan & Muhammad Sultan Ali Bazmi & Ahmad , 2022. "Egyptian Clover Genotypic Divergence and Last Cutting Management Augment Nutritive Quality, Seed Yield and Milk Productivity," Sustainability, MDPI, vol. 14(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
    2. James P. Herrera & Jean Yves Rabezara & Ny Anjara Fifi Ravelomanantsoa & Miranda Metz & Courtni France & Ajilé Owens & Michelle Pender & Charles L. Nunn & Randall A. Kramer, 2021. "Food insecurity related to agricultural practices and household characteristics in rural communities of northeast Madagascar," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1393-1405, December.
    3. Sponagel, Christian & Bendel, Daniela & Angenendt, Elisabeth & Weber, Tobias Karl David & Gayler, Sebastian & Streck, Thilo & Bahrs, Enno, 2022. "Integrated assessment of regional approaches for biodiversity offsetting in urban-rural areas – A future based case study from Germany using arable land as an example," Land Use Policy, Elsevier, vol. 117(C).
    4. Sanches, Matilde & Sampaio, Ana Margarida & Araújo, Susana & van Eeuwijk, Fred & Van Breusegem, Frank & Vaz Patto, M. Carlota, 2024. "Grass pea (Lathyrus sativus) interesting panoply of mechanisms to cope with contrasting water stress conditions – a controlled study of sub populational differences in a worldwide collection of access," Agricultural Water Management, Elsevier, vol. 292(C).
    5. Salvatore La Bella & Giuseppe Virga & Nicolò Iacuzzi & Mario Licata & Leo Sabatino & Beppe Benedetto Consentino & Claudio Leto & Teresa Tuttolomondo, 2020. "Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary ( Rosmarinus officinalis L.) Biotypes Grown in Pot," Agriculture, MDPI, vol. 11(1), pages 1-15, December.
    6. Schiller, Josepha & Jänicke, Clemens & Reckling, Moritz & Ryo, Masahiro, 2024. "Higher crop rotational diversity in more simplified agricultural landscapes in Northeastern Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(4).
    7. Andrea Colantoni & Lucia Recchia & Guido Bernabei & Mariateresa Cardarelli & Youssef Rouphael & Giuseppe Colla, 2017. "Analyzing the Environmental Impact of Chemically-Produced Protein Hydrolysate from Leather Waste vs. Enzymatically-Produced Protein Hydrolysate from Legume Grains," Agriculture, MDPI, vol. 7(8), pages 1-9, July.
    8. Matthew Hutcheson & Alec Morton & Shona Blair, 2024. "Exploring Perspectives on Agroecological Transition in Scotland with Critical Systems Heuristics," Systemic Practice and Action Research, Springer, vol. 37(4), pages 459-482, August.
    9. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    10. Kolady, Deepthi E. & Van Der Sluis, Evert, 2021. "Adoption Determinants of Precision Agriculture Technologies and Conservation Agriculture: Evidence from South Dakota," Western Economics Forum, Western Agricultural Economics Association, vol. 19(2), December.
    11. Rosa-Schleich, Julia & Loos, Jacqueline & Ferrante, Marco & Mußhoff, Oliver & Tscharntke, Teja, 2024. "Mixed farmers' perception of the ecological-economic performance of diversified farming," Ecological Economics, Elsevier, vol. 220(C).
    12. Galioto, Francesco & Nino, Pasquale, 2023. "Investigating the reasons behind the choice to promote crop diversification practices through the new CAP reform in Europe," Land Use Policy, Elsevier, vol. 133(C).
    13. Ishwari Singh Bisht & Jai Chand Rana & Sudhir Pal Ahlawat, 2020. "The Future of Smallholder Farming in India: Some Sustainability Considerations," Sustainability, MDPI, vol. 12(9), pages 1-25, May.
    14. Birthal, Pratap S. & Hazrana, Jaweriah & Roy, Devesh & Satyasai, K. J. S, 2024. "Can Finance Mitigate Climate Risks in Agriculture? Farm-level Evidence from India," Policy Papers 344992, ICAR National Institute of Agricultural Economics and Policy Research (NIAP).
    15. Danuta Leszczyńska & Agnieszka Klimek-Kopyra & Krzysztof Patkowski, 2020. "Evaluation of the Productivity of New Spring Cereal Mixture to Optimize Cultivation under Different Soil Conditions," Agriculture, MDPI, vol. 10(8), pages 1-13, August.
    16. Matthew C. LaFevor & Aoife K. Pitts, 2022. "Irrigation Increases Crop Species Diversity in Low-Diversity Farm Regions of Mexico," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    17. Khalep, Yurii & Moskalenko, Anatolii, 2020. "Ecological and economic aspects of the efficiency of Polissia organic plant models," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 6(4), December.
    18. Wirat Krasachat, 2023. "The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    19. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    20. Amer Ait Sidhoum & K Hervé Dakpo & Laure Latruffe, 2022. "Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12328-:d:674568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.