IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p357-d1053357.html
   My bibliography  Save this article

Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review

Author

Listed:
  • Chetan Badgujar

    (Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66502, USA)

  • Sanjoy Das

    (Electrical & Computer Engineering, Kansas State University, Manhattan, KS 66502, USA)

  • Dania Martinez Figueroa

    (Electrical & Computer Engineering, Kansas State University, Manhattan, KS 66502, USA)

  • Daniel Flippo

    (Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66502, USA)

Abstract

Rapid advancements in technology, particularly in soil tools and agricultural machinery, have led to the proliferation of mechanized agriculture. The interaction between such tools/machines and soil is a complex, dynamic process. The modeling of this interactive process is essential for reducing energy requirements, excessive soil pulverization, and soil compaction, thereby leading to sustainable crop production. Traditional methods that rely on simplistic physics-based models are not often the best approach. Computational intelligence-based approaches are an attractive alternative to traditional methods. These methods are highly versatile, can handle various forms of data, and are adaptive in nature. Recent years have witnessed a surge in adapting such methods in all domains of engineering, including agriculture. These applications leverage not only classical computational intelligence methods, but also emergent ones, such as deep learning. Although classical methods have routinely been applied to the soil–machine interaction studies, the field is yet to harness the more recent developments in computational intelligence. The purpose of this review article is twofold. Firstly, it provides an in-depth description of classical computational intelligence methods, including their underlying theoretical basis, along with a survey of their use in soil–machine interaction research. Hence, it serves as a concise and systematic reference for practicing engineers as well as researchers in this field. Next, this article provides an outline of various emergent methods in computational intelligence, with the aim of introducing state-of-the-art methods to the interested reader and motivating their application in soil–machine interaction research.

Suggested Citation

  • Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:357-:d:1053357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009. "Data Mining in Agriculture," Springer Optimization and Its Applications, Springer, number 978-0-387-88615-2, December.
    2. Taghavifar, Hamid & Mardani, Aref & Hosseinloo, Ashkan Haji, 2015. "Appraisal of artificial neural network-genetic algorithm based model for prediction of the power provided by the agricultural tractors," Energy, Elsevier, vol. 93(P2), pages 1704-1710.
    3. Andrii Zabrodskyi & Egidijus Šarauskis & Savelii Kukharets & Antanas Juostas & Gediminas Vasiliauskas & Albinas Andriušis, 2021. "Analysis of the Impact of Soil Compaction on the Environment and Agricultural Economic Losses in Lithuania and Ukraine," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    4. Taghavifar, Hamid & Mardani, Aref, 2015. "Evaluating the effect of tire parameters on required drawbar pull energy model using adaptive neuro-fuzzy inference system," Energy, Elsevier, vol. 85(C), pages 586-593.
    5. Kobby Acquah & Ying Chen, 2022. "Soil Compaction from Wheel Traffic under Three Tillage Systems," Agriculture, MDPI, vol. 12(2), pages 1-13, February.
    6. Mohammadreza Abbaspour-Gilandeh & Gholamhossein Shahgoli & Yousef Abbaspour-Gilandeh & Miguel Apolonio Herrera-Miranda & José Luis Hernández-Hernández & Israel Herrera-Miranda, 2020. "Measuring and Comparing Forces Acting on Moldboard Plow and Para-Plow with Wing to Replace Moldboard Plow with Para-Plow for Tillage and Modeling It Using Adaptive Neuro-Fuzzy Interface System (ANFIS)," Agriculture, MDPI, vol. 10(12), pages 1-12, December.
    7. Katarzyna Pentoś & Krzysztof Pieczarka & Krzysztof Lejman, 2020. "Application of Soft Computing Techniques for the Analysis of Tractive Properties of a Low-Power Agricultural Tractor under Various Soil Conditions," Complexity, Hindawi, vol. 2020, pages 1-11, January.
    8. Andrew Gordon Wilson & David A. Knowles & Zoubin Ghahramani, 2011. "Gaussian Process Regression Networks," Papers 1110.4411, arXiv.org.
    9. Wali Khan Mashwani, 2013. "Comprehensive Survey of the Hybrid Evolutionary Algorithms," International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 4(2), pages 1-19, April.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Taghavifar, Hamid & Mardani, Aref, 2014. "A comparative trend in forecasting ability of artificial neural networks and regressive support vector machine methodologies for energy dissipation modeling of off-road vehicles," Energy, Elsevier, vol. 66(C), pages 569-576.
    12. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Ucgul & Chung-Liang Chang, 2023. "Design and Application of Agricultural Equipment in Tillage Systems," Agriculture, MDPI, vol. 13(4), pages 1-3, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Taghavifar, Hamid & Mardani, Aref & Hosseinloo, Ashkan Haji, 2015. "Appraisal of artificial neural network-genetic algorithm based model for prediction of the power provided by the agricultural tractors," Energy, Elsevier, vol. 93(P2), pages 1704-1710.
    7. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    8. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    9. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    10. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    11. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    15. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    16. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    17. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    18. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    19. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    20. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:357-:d:1053357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.