IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7607545.html
   My bibliography  Save this article

Application of Soft Computing Techniques for the Analysis of Tractive Properties of a Low-Power Agricultural Tractor under Various Soil Conditions

Author

Listed:
  • Katarzyna Pentoś
  • Krzysztof Pieczarka
  • Krzysztof Lejman

Abstract

Considering the fuel consumption and soil compaction, optimization of the performance of tractors is crucial for modern agricultural practices. The tractive performance is influenced by many factors, making it difficult to be modeled. In this work, the traction force and tractive efficiency of a low-power tractor, as affected by soil coefficient, vertical load, horizontal deformation, soil compaction, and soil moisture, were studied. The optimal work of a tractor is a compromise between the maximum traction force and the maximum tractive efficiency. Optimizing these factors is complex and requires accurate models. To this end, the performances of soft computing approaches, including neural networks, genetic algorithms, and adaptive network fuzzy inference system, were evaluated. The optimal performance was realized by neural networks trained by backpropagation as well as backpropagation combined with a genetic algorithm, with a coefficient of determination of 0.955 for the traction force and 0.954 for the tractive efficiency. Based on models with the best accuracy, a sensitivity analysis was performed. The results showed that the traction performance is mainly influenced by the soil type; nevertheless, the vertical load and soil moisture also exhibited a relatively strong influence.

Suggested Citation

  • Katarzyna Pentoś & Krzysztof Pieczarka & Krzysztof Lejman, 2020. "Application of Soft Computing Techniques for the Analysis of Tractive Properties of a Low-Power Agricultural Tractor under Various Soil Conditions," Complexity, Hindawi, vol. 2020, pages 1-11, January.
  • Handle: RePEc:hin:complx:7607545
    DOI: 10.1155/2020/7607545
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/7607545.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/7607545.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7607545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Pentoś & Krzysztof Pieczarka & Kamil Serwata, 2021. "The Relationship between Soil Electrical Parameters and Compaction of Sandy Clay Loam Soil," Agriculture, MDPI, vol. 11(2), pages 1-11, February.
    2. Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
    3. Naji Mordi Naji Al-Dosary & Abdulwahed Mohamed Aboukarima & Saad Abdulrahman Al-Hamed, 2022. "Evaluation of Artificial Neural Network to Model Performance Attributes of a Mechanization Unit (Tractor-Chisel Plow) under Different Working Variables," Agriculture, MDPI, vol. 12(6), pages 1-24, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7607545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.