IDEAS home Printed from https://ideas.repec.org/b/spr/spopap/978-0-387-88615-2.html
   My bibliography  Save this book

Data Mining in Agriculture

Author

Listed:
  • Antonio Mucherino

    (University of Florida)

  • Petraq J. Papajorgji

    (University of Florida)

  • Panos M. Pardalos

    (University of Florida)

Abstract

No abstract is available for this item.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009. "Data Mining in Agriculture," Springer Optimization and Its Applications, Springer, number 978-0-387-88615-2, June.
  • Handle: RePEc:spr:spopap:978-0-387-88615-2
    DOI: 10.1007/978-0-387-88615-2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Rodríguez & Marcos Pastorini & Lorena Etcheverry & Christian Chreties & Mónica Fossati & Alberto Castro & Angela Gorgoglione, 2021. "Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    2. Bohumil Kába, 2011. "Exploratory analysis of selected indicators of the Czech Republic regional labour markets," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 59(4), pages 123-128.
    3. Johannes Berens & Kerstin Schneider & Simon Görtz & Simon Oster & Julian Burghoff, 2018. "Early Detection of Students at Risk – Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods," CESifo Working Paper Series 7259, CESifo.
    4. Zonlehoua Coulibali & Athyna Nancy Cambouris & Serge-Étienne Parent, 2020. "Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-32, August.
    5. Yotsaphat Kittichotsatsawat & Varattaya Jangkrajarng & Korrakot Yaibuathet Tippayawong, 2021. "Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    6. Antiopi Panteli & Basilis Boutsinas & Ioannis Giannikos, 2021. "On solving the multiple p-median problem based on biclustering," Operational Research, Springer, vol. 21(1), pages 775-799, March.
    7. Junlong Zhang & Youbin He & Yuan Zhang & Weifeng Li & Junjie Zhang, 2022. "Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China," Energies, MDPI, vol. 15(10), pages 1-15, May.
    8. Muhammad Islam & Muhammad Usman & Azhar Mahmood & Aaqif Afzaal Abbasi & Oh-Young Song, 2020. "Predictive analytics framework for accurate estimation of child mortality rates for Internet of Things enabled smart healthcare systems," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
    9. Orkida Ilollari & Petraq Papajorgji & Ardian Civici, 2024. "Stimulating the Post-COVID-19 Economic Recovery Scenarios to Evaluate Students' Understanding," International Journal of Sociotechnology and Knowledge Development (IJSKD), IGI Global, vol. 16(1), pages 1-14, January.
    10. Lynn Wu & Lorin Hitt & Bowen Lou, 2020. "Data Analytics, Innovation, and Firm Productivity," Management Science, INFORMS, vol. 66(5), pages 2017-2039, May.
    11. Orkida Ilollari & Petraq Papajorgji & Adrian Civici & Howard Moskowitz, 2022. "Measuring Client’s Feelings on Mobile Banking," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 23(1), pages 28-39, June.
    12. Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
    13. Arif Jamal Siddiqui & Sadaf Jahan & Maqsood Ahmed Siddiqui & Andleeb Khan & Mohammed Merae Alshahrani & Riadh Badraoui & Mohd Adnan, 2023. "Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Desig," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    14. Hui Zou & Zhihong Zou & Xiaojing Wang, 2015. "An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China," IJERPH, MDPI, vol. 12(11), pages 1-14, November.
    15. Danijel Jevtic & Romain Deleze & Joerg Osterrieder, 2022. "AI for trading strategies," Papers 2208.07168, arXiv.org.
    16. Odile Carisse & Mamadou Lamine Fall, 2021. "Decision Trees to Forecast Risks of Strawberry Powdery Mildew Caused by Podosphaera aphanis," Agriculture, MDPI, vol. 11(1), pages 1-16, January.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spopap:978-0-387-88615-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.