Appraisal of artificial neural network-genetic algorithm based model for prediction of the power provided by the agricultural tractors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.10.066
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Taghavifar, Hamid & Mardani, Aref, 2015. "Evaluating the effect of tire parameters on required drawbar pull energy model using adaptive neuro-fuzzy inference system," Energy, Elsevier, vol. 85(C), pages 586-593.
- Taghavifar, Hamid & Mardani, Aref & Karim Maslak, Haleh, 2015. "A comparative study between artificial neural networks and support vector regression for modeling of the dissipated energy through tire-obstacle collision dynamics," Energy, Elsevier, vol. 89(C), pages 358-364.
- Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2014. "Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm," Energy, Elsevier, vol. 71(C), pages 656-664.
- Taghavifar, Hamid & Mardani, Aref & Karim-Maslak, Haleh, 2014. "Multi-criteria optimization model to investigate the energy waste of off-road vehicles utilizing soil bin facility," Energy, Elsevier, vol. 73(C), pages 762-770.
- Taghavifar, Hamid & Mardani, Aref, 2014. "Analyses of energy dissipation of run-off-road wheeled vehicles utilizing controlled soil bin facility environment," Energy, Elsevier, vol. 66(C), pages 973-980.
- Taghavifar, Hamid & Mardani, Aref, 2014. "A comparative trend in forecasting ability of artificial neural networks and regressive support vector machine methodologies for energy dissipation modeling of off-road vehicles," Energy, Elsevier, vol. 66(C), pages 569-576.
- Taghavifar, Hamid & Mardani, Aref, 2014. "Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices," Energy, Elsevier, vol. 68(C), pages 651-657.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Naji Mordi Naji Al-Dosary & Abdulwahed Mohamed Aboukarima & Saad Abdulrahman Al-Hamed, 2022. "Evaluation of Artificial Neural Network to Model Performance Attributes of a Mechanization Unit (Tractor-Chisel Plow) under Different Working Variables," Agriculture, MDPI, vol. 12(6), pages 1-24, June.
- Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Taghavifar, Hamid & Mardani, Aref & Karim Maslak, Haleh, 2015. "A comparative study between artificial neural networks and support vector regression for modeling of the dissipated energy through tire-obstacle collision dynamics," Energy, Elsevier, vol. 89(C), pages 358-364.
- Janulevičius, Algirdas & Damanauskas, Vidas, 2015. "How to select air pressures in the tires of MFWD (mechanical front-wheel drive) tractor to minimize fuel consumption for the case of reasonable wheel slip," Energy, Elsevier, vol. 90(P1), pages 691-700.
- Taghavifar, Hamid & Mardani, Aref, 2015. "Evaluating the effect of tire parameters on required drawbar pull energy model using adaptive neuro-fuzzy inference system," Energy, Elsevier, vol. 85(C), pages 586-593.
- Taghavifar, Hamid & Mardani, Aref & Karim-Maslak, Haleh, 2014. "Multi-criteria optimization model to investigate the energy waste of off-road vehicles utilizing soil bin facility," Energy, Elsevier, vol. 73(C), pages 762-770.
- Shafaei, S.M. & Mousazadeh, H., 2023. "Motion energy perspective of tracked locomotion system of autonomous tractor-trailer robot," Energy, Elsevier, vol. 264(C).
- Taghavifar, Hamid & Mardani, Aref & Hosseinloo, Ashkan Haji, 2015. "Experimental analysis of the dissipated energy through tire-obstacle collision dynamics," Energy, Elsevier, vol. 91(C), pages 573-578.
- Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
- Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2014. "Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm," Energy, Elsevier, vol. 71(C), pages 656-664.
- Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.
- Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
- Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
- Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
- Hazar, Hanbey & Gul, Hakan, 2016. "Modeling analysis of chrome carbide (Cr3C2) coating on parts of combustion chamber of a SI engine," Energy, Elsevier, vol. 115(P1), pages 76-87.
- Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
- Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
- Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
- Wang, H., 2015. "A generalized MCDA–DEA (multi-criterion decision analysis–data envelopment analysis) approach to construct slacks-based composite indicator," Energy, Elsevier, vol. 80(C), pages 114-122.
- Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
- Zhang, Zhicheng & Wei, Shengli & Zhang, Shaobang & Ni, Shidong, 2024. "Study of RP-3/n-butanol fuel spray characteristics and ANN prediction of spray tip penetration," Energy, Elsevier, vol. 292(C).
- Moinfar, AbdolMajid & Shahgholi, Gholamhossein & Gilandeh, Yousef Abbaspour & Gundoshmian, Tarahom Mesri, 2020. "The effect of the tractor driving system on its performance and fuel consumption," Energy, Elsevier, vol. 202(C).
More about this item
Keywords
Artificial intelligence; Power; Soil bin; Tractor; Off-road vehicles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1704-1710. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.