IDEAS home Printed from https://ideas.repec.org/a/igg/jaec00/v4y2013i2p1-19.html
   My bibliography  Save this article

Comprehensive Survey of the Hybrid Evolutionary Algorithms

Author

Listed:
  • Wali Khan Mashwani

    (Department of Mathematics, Kohat University of Science & Technology (KUST), Kohat, Khyber Pukhtunkhwa, Pakistan)

Abstract

Multiobjective evolutionary algorithm based on decomposition (MOEA/D) and an improved non-dominating sorting multiobjective genetic algorithm (NSGA-II) is two well known multiobjective evolutionary algorithms (MOEAs) in the field of evolutionary computation. This paper mainly reviews their hybrid versions and some other algorithms which are developed for solving multiobjective optimization problems (MOPs. The mathematical formulation of a MOP and some basic definitions for tackling MOPs, including Pareto optimality, Pareto optimal set (PS), Pareto front (PF) are provided in Section 1. Section 2 presents a brief introduction to hybrid MOEAs. The authors present literature review in subsections. Subsection 2.1 provides memetic multiobjective evolutionary algorithms. Subsection 2.2 presents the hybrid versions of well-known Pareto dominance based MOEAs. Subsection 2.4 summarizes some enhanced Versions of MOEA/D paradigm. Subsection 2.5 reviews some multimethod search approaches dealing optimization problems.

Suggested Citation

  • Wali Khan Mashwani, 2013. "Comprehensive Survey of the Hybrid Evolutionary Algorithms," International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 4(2), pages 1-19, April.
  • Handle: RePEc:igg:jaec00:v:4:y:2013:i:2:p:1-19
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jaec.2013040101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
    2. A. S. Syed Shahul Hameed & Narendran Rajagopalan, 2022. "SPGD: Search Party Gradient Descent Algorithm, a Simple Gradient-Based Parallel Algorithm for Bound-Constrained Optimization," Mathematics, MDPI, vol. 10(5), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaec00:v:4:y:2013:i:2:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.