IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v149y2024icp21-35.html
   My bibliography  Save this article

Do road network patterns and points of interest influence bicycle safety? Evidence from dockless bike sharing in China and policy implications for traffic safety planning

Author

Listed:
  • Li, Jia
  • Li, Chengqian
  • Zhao, Xiaohua
  • Wang, Xuesong

Abstract

Dockless bike sharing, also known as the shared bicycle industry, is booming, especially in China. Since cyclists are more vulnerable than motor vehicle drivers in traffic crashes, it is necessary to investigate shared bicycle traffic safety. Road network patterns and the proportion of different points of interest (POIs) are two critical macro-level factors influencing bicycle crashes. Therefore, it is necessary to consider bicycle traffic safety in road networks and land use policy in road traffic planning. This study investigated risk exposure, demographic data, proportion of different POIs, land use, road network features, and bicycle crashes in 124 census tracts in Beijing's Sixth Ring Road area. The betweenness centrality was calculated for the census tracts to classify the road network patterns. A negative binomial conditional autoregressive (NB-CAR) model was developed for bicycle total crashes, and bivariate negative binomial CAR (BNB-CAR) models were developed for bicycle single-vehicle (SV) and multi-vehicle (MV) crashes, property damage only (PDO) and injury crashes. The results show the following. 1) The BNB-CAR model had a better fit than the NB-CAR model. 2) The census tracts with parallel, mixed, and loops & lollipops patterns were associated with higher bicycle crash frequency than those with a grid pattern. The difference in the bicycle SV crash frequency between the mixed and loop & lollipop patterns was larger than that in the bicycle MV crash frequency. 3) Census tracts with higher proportions of POIs for subway and bus stations (T-POI) were associated with fewer bicycle crashes. 4) Census tracts with higher arterial proportions were associated with more injury crashes. This study provides a theoretical basis for formulating road network and land-use policies to ensure road traffic safety.

Suggested Citation

  • Li, Jia & Li, Chengqian & Zhao, Xiaohua & Wang, Xuesong, 2024. "Do road network patterns and points of interest influence bicycle safety? Evidence from dockless bike sharing in China and policy implications for traffic safety planning," Transport Policy, Elsevier, vol. 149(C), pages 21-35.
  • Handle: RePEc:eee:trapol:v:149:y:2024:i:c:p:21-35
    DOI: 10.1016/j.tranpol.2024.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24000295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Buhl & J. Gautrais & R. Solé & P. Kuntz & S. Valverde & J. Deneubourg & G. Theraulaz, 2004. "Efficiency and robustness in ant networks of galleries," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 42(1), pages 123-129, November.
    2. Xie, Kun & Ozbay, Kaan & Yang, Di & Xu, Chuan & Yang, Hong, 2021. "Modeling bicycle crash costs using big data: A grid-cell-based Tobit model with random parameters," Journal of Transport Geography, Elsevier, vol. 91(C).
    3. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    4. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    5. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    6. Shin, Eun Jin, 2023. "Decomposing neighborhood disparities in bicycle crashes: A Gelbach decomposition analysis," Transport Policy, Elsevier, vol. 131(C), pages 156-172.
    7. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    8. VANDENBULCKE, Grégory & THOMAS, Isabelle & INT PANIS, Luc, 2014. "Predicting cycling accident risk in Brussels: a spatial case-control approach," LIDAM Reprints CORE 2535, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Hou, Qinzhong & Meng, Xianghai & Leng, Junqiang & Yu, Lu, 2018. "Application of a random effects negative binomial model to examine crash frequency for freeways in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 937-944.
    10. Manfred M. Fischer & Peter Nijkamp (ed.), 2014. "Handbook of Regional Science," Springer Books, Springer, edition 127, number 978-3-642-23430-9, October.
    11. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    12. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    13. Smith, Brian J., 2007. "boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i11).
    14. Wang, Xuesong & You, Shikai & Wang, Ling, 2017. "Classifying road network patterns using multinomial logit model," Journal of Transport Geography, Elsevier, vol. 58(C), pages 104-112.
    15. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    16. Shakil Rifaat & Richard Tay & Alexandre de Barros, 2012. "Urban Street Pattern and Pedestrian Traffic Safety," Journal of Urban Design, Taylor & Francis Journals, vol. 17(3), pages 337-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaowei Yin & Yuanyuan Guo & Mengshu Zhou & Yixuan Wang & Fengliang Tang, 2024. "Integration between Dockless Bike-Sharing and Buses: The Effect of Urban Road Network Characteristics," Land, MDPI, vol. 13(8), pages 1-27, August.
    2. Zhang, Ziru & Krishnakumari, Panchamy & Schulte, Frederik & van Oort, Niels, 2023. "Improving the service of E-bike sharing by demand pattern analysis: A data-driven approach," Research in Transportation Economics, Elsevier, vol. 101(C).
    3. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    4. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    5. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    6. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    7. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    8. Zeng, Qiang & Wen, Huiying & Huang, Helai & Wang, Jie & Lee, Jinwoo, 2020. "Analysis of crash frequency using a Bayesian underreporting count model with spatial correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Wu, Peijie & Meng, Xianghai & Song, Li, 2021. "Bayesian space–time modeling of bicycle and pedestrian crash risk by injury severity levels to explore the long-term spatiotemporal effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    10. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    11. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Myhrmann, Marcus Skyum & Mabit, Stefan Eriksen, 2023. "Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    13. Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
    14. Sai Chand & Emily Moylan & S. Travis Waller & Vinayak Dixit, 2020. "Analysis of Vehicle Breakdown Frequency: A Case Study of New South Wales, Australia," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    15. Sohouenou, Philippe Y.R. & Christidis, Panayotis & Christodoulou, Aris & Neves, Luis A.C. & Presti, Davide Lo, 2020. "Using a random road graph model to understand road networks robustness to link failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    16. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    17. Sai Chand & Zhuolin Li & Abdulmajeed Alsultan & Vinayak V. Dixit, 2022. "Comparing and Contrasting the Impacts of Macro-Level Factors on Crash Duration and Frequency," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    18. Ross-Perez, Antonio & Walton, Neil & Pinto, Nuno, 2022. "Identifying trip purpose from a dockless bike-sharing system in Manchester," Journal of Transport Geography, Elsevier, vol. 99(C).
    19. Wang, Yacan & Li, Jingjing & Su, Duan & Zhou, Huiyu, 2023. "Spatial-temporal heterogeneity and built environment nonlinearity in inconsiderate parking of dockless bike-sharing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    20. An, Zihao & Xie, Bo & Liu, Qiyang, 2023. "No street is an Island: Street network morphologies and traffic safety," Transport Policy, Elsevier, vol. 141(C), pages 167-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:149:y:2024:i:c:p:21-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.