IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v22y2020i3d10.1007_s10109-020-00323-5.html
   My bibliography  Save this article

Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010

Author

Listed:
  • Lan Hu

    (University of Texas at Dallas)

  • Yongwan Chun

    (University of Texas at Dallas)

  • Daniel A. Griffith

    (University of Texas at Dallas)

Abstract

Spatial cancer data analyses frequently utilize regression techniques to investigate associations between cancer incidences and potential covariates. Model specification, a process of formulating an appropriate model, is a well-recognized task in the literature. It involves a distributional assumption for a dependent variable, a proper set of predictor variables (i.e., covariates), and a functional form of the model, among other things. For example, one of the assumptions of a conventional statistical model is independence of model residuals, an assumption that can be easily violated when spatial autocorrelation is present in observations. A failure to account for spatial structure can result in unreliable estimation results. Furthermore, the difficulty of describing georeferenced data may increase with the presence of a positive and negative spatial autocorrelation mixture, because most current model specifications cannot successfully explain a mixture of spatial processes with a single spatial autocorrelation parameter. Particularly, properly accounting for a spatial autocorrelation mixture is challenging. This paper empirically investigates and uncovers a possible spatial autocorrelation mixture pattern in breast cancer incidences in Broward County, Florida, during 2000–2010, employing different model specifications. The analysis results show that Moran eigenvector spatial filtering provides a flexible method to examine such a mixture.

Suggested Citation

  • Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
  • Handle: RePEc:kap:jgeosy:v:22:y:2020:i:3:d:10.1007_s10109-020-00323-5
    DOI: 10.1007/s10109-020-00323-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-020-00323-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-020-00323-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Griffith, 2006. "Hidden negative spatial autocorrelation," Journal of Geographical Systems, Springer, vol. 8(4), pages 335-355, October.
    2. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," International Regional Science Review, , vol. 34(2), pages 253-280, April.
    3. Yongwan Chun & Daniel A. Griffith & Monghyeon Lee & Parmanand Sinha, 2016. "Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters," Journal of Geographical Systems, Springer, vol. 18(1), pages 67-85, January.
    4. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    5. Timander, Linda M. & McLafferty, Sara, 1998. "Breast cancer in West Islip, NY: A spatial clustering analysis with covariates," Social Science & Medicine, Elsevier, vol. 46(12), pages 1623-1635, June.
    6. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    7. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    8. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    9. Gerber, Florian & Furrer, Reinhard, 2015. "Pitfalls in the Implementation of Bayesian Hierarchical Modeling of Areal Count Data: An Illustration Using BYM and Leroux Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(c01).
    10. Daniel Griffith, 2009. "Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows," Journal of Geographical Systems, Springer, vol. 11(2), pages 117-140, June.
    11. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    12. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    13. Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4, February.
    14. Yongwan Chun & Daniel Griffith & Monghyeon Lee & Parmanand Sinha, 2016. "Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters," Journal of Geographical Systems, Springer, vol. 18(1), pages 67-85, January.
    15. Daniel A. Griffith, 2009. "Spatial Autocorrelation in Spatial Interaction," Advances in Spatial Science, in: Aura Reggiani & Peter Nijkamp (ed.), Complexity and Spatial Networks, chapter 0, pages 221-237, Springer.
    16. Manfred M. Fischer & Peter Nijkamp (ed.), 2014. "Handbook of Regional Science," Springer Books, Springer, edition 127, number 978-3-642-23430-9, July.
    17. repec:rre:publsh:v:37:y:2007:i:1:p:28-38 is not listed on IDEAS
    18. Griffith, Daniel A., 2002. "A spatial filtering specification for the auto-Poisson model," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 245-251, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    2. Daniel A. Griffith, 2019. "Negative Spatial Autocorrelation: One of the Most Neglected Concepts in Spatial Statistics," Stats, MDPI, vol. 2(3), pages 1-28, August.
    3. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    4. Rodolfo Metulini & Roberto Patuelli & Daniel A. Griffith, 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade," Econometrics, MDPI, vol. 6(1), pages 1-15, February.
    5. Donegan, Connor & Chun, Yongwan & Hughes, Amy E., 2020. "Bayesian estimation of spatial filters with Moran's eigenvectors and hierarchical shrinkage priors," OSF Preprints fah3z, Center for Open Science.
    6. Lan Hu & Daniel A. Griffith & Yongwan Chun, 2018. "Space-Time Statistical Insights about Geographic Variation in Lung Cancer Incidence Rates: Florida, USA, 2000–2011," IJERPH, MDPI, vol. 15(11), pages 1-18, October.
    7. Clément Gorin, 2016. "Patterns and determinants of inventors' mobility across European urban areas," Working Papers halshs-01313086, HAL.
    8. Daniel A. Griffith & Yongwan Chun & Jan Hauke, 2022. "A Moran eigenvector spatial filtering specification of entropy measures," Papers in Regional Science, Wiley Blackwell, vol. 101(1), pages 259-279, February.
    9. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    10. Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Papers in Regional Science, Wiley Blackwell, vol. 96(2), pages 357-380, June.
    11. Giuseppe Ricciardo Lamonica & Barbara Zagaglia, 2013. "The determinants of internal mobility in Italy, 1995-2006," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(16), pages 407-440.
    12. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    13. Yu, Danlin & Murakami, Daisuke & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Wang, Xiaoxi & Li, Guangdong, 2020. "Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 21-37.
    14. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    15. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    16. Oshan, Taylor M., 2022. "Spatial Interaction Modeling," OSF Preprints m3ah8, Center for Open Science.
    17. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    18. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    19. Giuseppe Ricciardo Lamonica, 2018. "An analysis of methods for the treatment of autocorrelation in spatial interaction models," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 72(2), pages 2-9, April-Jun.
    20. Lambert, Dayton M. & Brown, Jason P. & Florax, Raymond J.G.M., 2010. "A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 241-252, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:22:y:2020:i:3:d:10.1007_s10109-020-00323-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.