IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v021i11.html
   My bibliography  Save this article

boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference

Author

Listed:
  • Smith, Brian J.

Abstract

Markov chain Monte Carlo (MCMC) is the most widely used method of estimating joint posterior distributions in Bayesian analysis. The idea of MCMC is to iteratively produce parameter values that are representative samples from the joint posterior. Unlike frequentist analysis where iterative model fitting routines are monitored for convergence to a single point, MCMC output is monitored for convergence to a distribution. Thus, specialized diagnostic tools are needed in the Bayesian setting. To this end, the R package boa was created. This manuscript presents the user's manual for boa, which outlines the use of and methodology upon which the software is based. Included is a description of the menu system, data management capabilities, and statistical/graphical methods for convergence assessment and posterior inference. Throughout the manual, a linear regression example is used to illustrate the software.

Suggested Citation

  • Smith, Brian J., 2007. "boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i11).
  • Handle: RePEc:jss:jstsof:v:021:i11
    DOI: http://hdl.handle.net/10.18637/jss.v021.i11
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v021i11/v21i11.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v021i11/boa_1.1.6-1.tar.gz
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v021.i11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiandong Wang & Panpan Zhang, 2022. "Directed hybrid random networks mixing preferential attachment with uniform attachment mechanisms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 957-986, October.
    2. Ralf van der Lans & Bram Van den Bergh & Evelien Dieleman, 2014. "Partner Selection in Brand Alliances: An Empirical Investigation of the Drivers of Brand Fit," Marketing Science, INFORMS, vol. 33(4), pages 551-566, July.
    3. Richardson, Robert & Kottas, Athanasios & Sansó, Bruno, 2017. "Flexible integro-difference equation modeling for spatio-temporal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 182-198.
    4. Lizbeth Naranjo & Luz Judith R. Esparza & Carlos J. Pérez, 2020. "A Hidden Markov Model to Address Measurement Errors in Ordinal Response Scale and Non-Decreasing Process," Mathematics, MDPI, vol. 8(4), pages 1-12, April.
    5. Slaets, Leen & Claeskens, Gerda & Silverman, Bernard W., 2013. "Warping Functional Data in R and C via a Bayesian Multiresolution Approach," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i03).
    6. Frederic Ouedraogo & B. Wade Brorsen, 2018. "Hierarchical Bayesian Estimation of a Stochastic Plateau Response Function: Determining Optimal Levels of Nitrogen Fertilization," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(1), pages 87-102, March.
    7. Torabi, Mahmoud & Shokoohi, Farhad, 2012. "Likelihood inference in small area estimation by combining time-series and cross-sectional data," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 213-221.
    8. Brian Neelon & A. James O'Malley & Sharon-Lise T. Normand, 2011. "A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity," Biometrics, The International Biometric Society, vol. 67(1), pages 280-289, March.
    9. Peltonen, Jaakko & Venna, Jarkko & Kaski, Samuel, 2009. "Visualizations for assessing convergence and mixing of Markov chain Monte Carlo simulations," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4453-4470, October.
    10. repec:jss:jstsof:44:i04 is not listed on IDEAS
    11. S. Mythreyi Koppur & Dr. B. Senthilkumar, 2021. "Estimation of Odds Ratio as a Quality Indicator on Investment Recommendations - A Bayesian Approach," Journal of Commerce and Trade, Society for Advanced Management Studies, vol. 16(1), pages 22-30, April.
    12. Li, Xi & Yeluripati, Jagadeesh & Jones, Edward O. & Uchida, Yoshitaka & Hatano, Ryusuke, 2015. "Hierarchical Bayesian calibration of nitrous oxide (N2O) and nitrogen monoxide (NO) flux module of an agro-ecosystem model: ECOSSE," Ecological Modelling, Elsevier, vol. 316(C), pages 14-27.
    13. Fernández-i-Marín, Xavier, 2016. "ggmcmc: Analysis of MCMC Samples and Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i09).
    14. repec:jss:jstsof:40:i05 is not listed on IDEAS
    15. Li, Jia & Li, Chengqian & Zhao, Xiaohua & Wang, Xuesong, 2024. "Do road network patterns and points of interest influence bicycle safety? Evidence from dockless bike sharing in China and policy implications for traffic safety planning," Transport Policy, Elsevier, vol. 149(C), pages 21-35.
    16. Hong, Zhaoping & Lian, Heng, 2012. "BOPA: A Bayesian hierarchical model for outlier expression detection," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4146-4156.
    17. Fileccia, Gaetano & Sgarra, Carlo, 2018. "A particle filtering approach to oil futures price calibration and forecasting," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 21-34.
    18. Peter Stüttgen & Peter Boatwright & Robert T. Monroe, 2012. "A Satisficing Choice Model," Marketing Science, INFORMS, vol. 31(6), pages 878-899, November.
    19. Burr, Deborah, 2012. "bspmma: An R Package for Bayesian Semiparametric Models for Meta-Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i04).
    20. Al-Mamun, A. & Barber, J. & Ginting, V. & Pereira, F. & Rahunanthan, A., 2020. "Contaminant transport forecasting in the subsurface using a Bayesian framework," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    21. González, Jorge & Barrientos, Andrés F. & Quintana, Fernando A., 2015. "Bayesian nonparametric estimation of test equating functions with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 222-244.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:021:i11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.