IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v87y2020ics0966692319307665.html
   My bibliography  Save this article

Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China

Author

Listed:
  • Xing, Yingying
  • Wang, Ke
  • Lu, Jian John

Abstract

In recent years, dockless bike-sharing has rapidly emerged in many cities all over the world, which provides a flexible tool for short-distance trips and interchange between different modes of transport. However, new problems have arisen with the fast and extensive development of the dockless bike-sharing system, such as high running expenses, ineffective bike repositioning, parking problems and so on. To improve the operations of the dockless bike-sharing system, this study aims to investigate the travel pattern and trip purpose of the bike-sharing users by combining bike-sharing data and points of interest (POIs). A massive amount of bike-sharing trips was obtained from the Mobike company, which is a bike-sharing operator in China. The POIs surrounding each trip origin and destination were derived from the Gaode Map application programming interface. K-means++ clustering was adopted to investigate dockless bike-sharing travel patterns and trip purpose based on trip records and their surrounding POIs. The clustering results show that on weekdays, bike-sharing trip origin and destination can be divided into five typical groups, i.e., dining, transportation, shopping, work and residential places. Dining is the most popular trip purpose by bike-sharing, followed by the transferring to other transportation modes and shopping. In addition, through understanding the spatial distribution of the bike-sharing usage patterns of five typical activities, strategies for improving the operation of the dockless bike-sharing system are provided.

Suggested Citation

  • Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
  • Handle: RePEc:eee:jotrge:v:87:y:2020:i:c:s0966692319307665
    DOI: 10.1016/j.jtrangeo.2020.102787
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319307665
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    2. Jia, Yingnan & Fu, Hua, 2019. "Association between innovative dockless bicycle sharing programs and adopting cycling in commuting and non-commuting trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 12-21.
    3. Xiaolu Zhou, 2015. "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    4. Roger Beecham & Jo Wood, 2014. "Exploring gendered cycling behaviours within a large-scale behavioural data-set," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(1), pages 83-97, February.
    5. Cheng, Peng & OuYang, Zhe & Liu, Yang, 2019. "Understanding bike sharing use over time by employing extended technology continuance theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 433-443.
    6. Heng Sun & Wayne Forsythe & Nigel Waters, 2007. "Modeling Urban Land Use Change and Urban Sprawl: Calgary, Alberta, Canada," Networks and Spatial Economics, Springer, vol. 7(4), pages 353-376, December.
    7. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    8. Zhang, Yongping & Lin, Diao & Liu, Xiaoyue Cathy, 2019. "Biking islands in cities: An analysis combining bike trajectory and percolation theory," Journal of Transport Geography, Elsevier, vol. 80(C).
    9. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    10. Yeran Sun & Amin Mobasheri & Xuke Hu & Weikai Wang, 2017. "Investigating Impacts of Environmental Factors on the Cycling Behavior of Bicycle-Sharing Users," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    11. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    12. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    13. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    14. Park, Chung & Sohn, So Young, 2017. "An optimization approach for the placement of bicycle-sharing stations to reduce short car trips: An application to the city of Seoul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 154-166.
    15. Dietmar Wolfram & Peiling Wang & Jin Zhang, 2009. "Identifying Web search session patterns using cluster analysis: A comparison of three search environments," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(5), pages 896-910, May.
    16. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    17. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    18. O’Brien, Oliver & Cheshire, James & Batty, Michael, 2014. "Mining bicycle sharing data for generating insights into sustainable transport systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 262-273.
    19. Jian-gang Shi & Hongyun Si & Guangdong Wu & Yangyue Su & Jing Lan, 2018. "Critical Factors to Achieve Dockless Bike-Sharing Sustainability in China: A Stakeholder-Oriented Network Perspective," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    20. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    2. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    3. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    4. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    5. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.
    6. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    7. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    8. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    9. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.
    10. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    11. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    12. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    13. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    14. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    15. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    16. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    17. Li, Haojie & Zhang, Yingheng & Ding, Hongliang & Ren, Gang, 2019. "Effects of dockless bike-sharing systems on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 398-411.
    18. De Zhao & Ghim Ping Ong & Wei Wang & Wei Zhou, 2021. "Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    19. Maas, Suzanne & Nikolaou, Paraskevas & Attard, Maria & Dimitriou, Loukas, 2021. "Examining spatio-temporal trip patterns of bicycle sharing systems in Southern European island cities," Research in Transportation Economics, Elsevier, vol. 86(C).
    20. Zhang, Yongping & Lin, Diao & Liu, Xiaoyue Cathy, 2019. "Biking islands in cities: An analysis combining bike trajectory and percolation theory," Journal of Transport Geography, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:87:y:2020:i:c:s0966692319307665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.