IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v117y2018ipap101-116.html
   My bibliography  Save this article

Role of road network features in the evaluation of incident impacts on urban traffic mobility

Author

Listed:
  • Sun, Chenshuo
  • Pei, Xin
  • Hao, Junheng
  • Wang, Yewen
  • Zhang, Zuo
  • Wong, S.C.

Abstract

In this paper, we seek to investigate the spatiotemporal impacts of traffic incident on urban road networks. The theoretical lens of a complex network leads us to expect that incident impacts are associated with the functionality that an intersection acts in a network, and also, the location of incident sites. Incident impacts are measured in both temporal and spatial dimension through mining the large-scale traffic flow data in conjunction with the incident record. In the complex network context, the urban road network can be converted into a weighted direct graph with intersections as nodes and road segments as edges with their geographic information. Four network features, i.e., Betweenness Centrality, weighted PageRank, Hub, and K-shell are assigned to each intersection to measure its functionality. Temporally, we find out significant correlations between incident delay and two network features by applying hazard-based models. Spatially, the micro impact and the macro impact are found to be strongly associated with three network features through estimating a Bayesian Negative-binomial Conditional Autoregressive model and a generalized linear model, respectively. Our study provides the basis of leveraging urban road network context to evaluate incident impacts, with some explanations, insights and possible extensions that would assist traffic administrations to guide the post-incident resilience and emergency management.

Suggested Citation

  • Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
  • Handle: RePEc:eee:transb:v:117:y:2018:i:pa:p:101-116
    DOI: 10.1016/j.trb.2018.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518302716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nam, Doohee & Mannering, Fred, 2000. "An exploratory hazard-based analysis of highway incident duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(2), pages 85-102, February.
    2. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    3. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    4. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    5. Sheu, Jiuh-Biing & Chou, Yi-Hwa & Shen, Liang-Jen, 2001. "A stochastic estimation approach to real-time prediction of incident effects on freeway traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 575-592, July.
    6. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    7. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    8. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    9. Zhou, Yiwei & Wang, Xiaokun & Holguín-Veras, José, 2016. "Discrete choice with spatial correlation: A spatial autoregressive binary probit model with endogenous weight matrix (SARBP-EWM)," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 440-455.
    10. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    11. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naseh Moghanlou, Lida & Di Maio, Francesco & Zio, Enrico, 2024. "Probabilistic scenario analysis of integrated road-power infrastructures with hybrid fleets of EVs and ICVs," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    4. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    5. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    6. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    7. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    8. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    9. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    10. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    11. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    12. Sodam Baek & Kibae Kim & Jorn Altmann, 2014. "Role of Platform Providers in Service Networks: The Case of Salesforce.com AppExchange," TEMEP Discussion Papers 2014112, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised May 2014.
    13. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    14. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    15. Filiposka, Sonja & Juiz, Carlos, 2015. "Community-based complex cloud data center," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 356-372.
    16. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    17. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    18. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    19. Zhaoqi Zang & Xiangdong Xu & Anthony Chen & Chao Yang, 2022. "Modeling the α-max capacity of transportation networks: a single-level mathematical programming formulation," Transportation, Springer, vol. 49(4), pages 1211-1243, August.
    20. Yan, Li & Cao, Huiying & Gao, Chao & Wang, Zhen & Li, Xuelong, 2023. "Mining of book-loan behavior based on coupling relationship analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:117:y:2018:i:pa:p:101-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.