IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v91y2021ics0966692321000065.html
   My bibliography  Save this article

Modeling bicycle crash costs using big data: A grid-cell-based Tobit model with random parameters

Author

Listed:
  • Xie, Kun
  • Ozbay, Kaan
  • Yang, Di
  • Xu, Chuan
  • Yang, Hong

Abstract

Bicyclists are among the most vulnerable road users in the urban transportation system. It is critical to investigate the contributing factors to bicycle-related crashes and to identify the hotspots for efficient allocation of treatment resources. A grid-cell-based modeling framework was used to incorporate heterogeneous data sources and to explore the overall safety patterns of bicyclists in Manhattan, New York City. A random parameters (RP) Tobit model was developed in the Bayesian framework to correlate transportation, land use, and sociodemographic data with bicycle crash costs. It is worth mentioning that a new algorithm was proposed to estimate bicyclist-involved crash exposure using large-scale bicycle ridership data from 2014 to 2016 obtained from Citi Bike, which is the largest bicycle sharing program in the United States. The proposed RP Tobit model could deal with left-censored crash cost data and was found to outperform the Tobit model by accounting for the unobserved heterogeneity across neighborhoods. Results indicated that bicycle ridership, bicycle rack density, subway ridership, taxi trips, bus stop density, population, and ratio of population under 14 were positively associated with bicycle crash cost, whereas residential ratio and median age had a negative impact on bicycle crash cost. The RP Tobit model was used to estimate the cell-specific potential for safety improvement (PSI) for hotspot ranking. The advantages of using the RP Tobit crash cost model to capture PSI are that injury severity is considered by being converted into unit costs, and varying effects of certain explanatory variables are accounted for by incorporating random parameters. The cell-based hotspot identification method can provide a complete risk map for bicyclists with high resolution. Most locations with high PSIs either had unprotected bicycle lanes or were close to the access points to protected bicycle routes.

Suggested Citation

  • Xie, Kun & Ozbay, Kaan & Yang, Di & Xu, Chuan & Yang, Hong, 2021. "Modeling bicycle crash costs using big data: A grid-cell-based Tobit model with random parameters," Journal of Transport Geography, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:jotrge:v:91:y:2021:i:c:s0966692321000065
    DOI: 10.1016/j.jtrangeo.2021.102953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692321000065
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2021.102953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    2. Chen, L. & Chen, C. & Srinivasan, R. & McKnight, C.E. & Ewing, R. & Roe, M., 2012. "Evaluating the safety effects of bicycle lanes in New York City," American Journal of Public Health, American Public Health Association, vol. 102(6), pages 1120-1127.
    3. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    4. Kun Xie & Kaan Ozbay & Abdullah Kurkcu & Hong Yang, 2017. "Analysis of Traffic Crashes Involving Pedestrians Using Big Data: Investigation of Contributing Factors and Identification of Hotspots," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1459-1476, August.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jia & Li, Chengqian & Zhao, Xiaohua & Wang, Xuesong, 2024. "Do road network patterns and points of interest influence bicycle safety? Evidence from dockless bike sharing in China and policy implications for traffic safety planning," Transport Policy, Elsevier, vol. 149(C), pages 21-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    2. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    3. Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
    4. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    5. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    6. Wu, Peijie & Meng, Xianghai & Song, Li, 2021. "Bayesian space–time modeling of bicycle and pedestrian crash risk by injury severity levels to explore the long-term spatiotemporal effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Earl W Duncan & Kerrie L Mengersen, 2020. "Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-28, May.
    8. repec:jss:jstsof:40:i05 is not listed on IDEAS
    9. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.
    10. Laura A. Hatfield & Steve Gutreuter & Michael A. Boogaard & Bradley P. Carlin, 2011. "Multilevel Empirical Bayes Modeling for Improved Estimation of Toxicant Formulations to Suppress Parasitic Sea Lamprey in the Upper Great Lakes," Biometrics, The International Biometric Society, vol. 67(3), pages 1153-1162, September.
    11. Kun Xie & Kaan Ozbay & Hong Yang & Di Yang, 2019. "A New Methodology for Before–After Safety Assessment Using Survival Analysis and Longitudinal Data," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1342-1357, June.
    12. Feng Gao & J. Miller & Chengjie Xiong & Julia Beiser & Mae Gordon, 2011. "A joint-modeling approach to assess the impact of biomarker variability on the risk of developing clinical outcome," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 83-100, March.
    13. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    14. Qingfang Liu & Yao Zhao & Sumedha Attanti & Joel L. Voss & Geoffrey Schoenbaum & Thorsten Kahnt, 2024. "Midbrain signaling of identity prediction errors depends on orbitofrontal cortex networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Manuguerra Maurizio & Heller Gillian Z, 2010. "Ordinal Regression Models for Continuous Scales," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, April.
    16. Peng Zhang & Juxin Liu & Jianghu Dong & Jelena L. Holovati & Brenda Letcher & Locksley E. McGann, 2012. "A Bayesian Adjustment for Multiplicative Measurement Errors for a Calibration Problem with Application to a Stem Cell Study," Biometrics, The International Biometric Society, vol. 68(1), pages 268-274, March.
    17. Iain Pardoe & Dean K. Simonton, 2008. "Applying discrete choice models to predict Academy Award winners," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 375-394, April.
    18. Kramer, Michael R. & Cooper, Hannah L. & Drews-Botsch, Carolyn D. & Waller, Lance A. & Hogue, Carol R., 2010. "Metropolitan isolation segregation and Black-White disparities in very preterm birth: A test of mediating pathways and variance explained," Social Science & Medicine, Elsevier, vol. 71(12), pages 2108-2116, December.
    19. Federico ANDREIS & Pier Alda FERRARI, 2015. "Customer Satisfaction Evaluation Using Multidimensional Item Response Theory Models," Departmental Working Papers 2015-25, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    20. Greves Grow, H. Mollie & Cook, Andrea J. & Arterburn, David E. & Saelens, Brian E. & Drewnowski, Adam & Lozano, Paula, 2010. "Child obesity associated with social disadvantage of children's neighborhoods," Social Science & Medicine, Elsevier, vol. 71(3), pages 584-591, August.
    21. Marc K. Francke & Alex Minne, 2017. "The Hierarchical Repeat Sales Model for Granular Commercial Real Estate and Residential Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 55(4), pages 511-532, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:91:y:2021:i:c:s0966692321000065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.