IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v71y2015icp85-99.html
   My bibliography  Save this article

Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model

Author

Listed:
  • Herbon, Avi
  • Hadas, Yuval

Abstract

The level of service on public transit routes is very much affected by the frequency and vehicle capacity. The combined values of these variables contribute to the costs associated with route operations as well as the costs associated with passenger comfort, such as waiting and overcrowding. The new approach to the problem that we introduce combines both passenger and operator costs within a generalized newsvendor model. From the passenger perspective, waiting and overcrowding costs are used; from the operator’s perspective, the costs are related to vehicle size, empty seats, and lost sales. Maximal passenger average waiting time as well as maximal vehicle capacity are considered as constraints that are imposed by the regulator to assure a minimal public transit service level or in order to comply with other regulatory considerations. The advantages of the newsvendor model are that (a) costs are treated as shortages (overcrowding) and surpluses (empty seats); (b) the model presents simultaneous optimal results for both frequency and vehicle size; (c) an efficient and fast algorithm is developed; and (d) the model assumes stochastic demand, and is not restricted to a specific distribution. We demonstrate the usefulness of the model through a case study and sensitivity analysis.

Suggested Citation

  • Herbon, Avi & Hadas, Yuval, 2015. "Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 85-99.
  • Handle: RePEc:eee:transb:v:71:y:2015:i:c:p:85-99
    DOI: 10.1016/j.trb.2014.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514001854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delgado, Felipe & Munoz, Juan Carlos & Giesen, Ricardo, 2012. "How much can holding and/or limiting boarding improve transit performance?," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1202-1217.
    2. Sergio R. Jara-Díaz & Antonio Gschwender, 2003. "From the Single Line Model to the Spatial Structure of Transit Services: Corridors or Direct?," Journal of Transport Economics and Policy, University of Bath, vol. 37(2), pages 261-277, May.
    3. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    4. Khouja, Moutaz, 1999. "The single-period (news-vendor) problem: literature review and suggestions for future research," Omega, Elsevier, vol. 27(5), pages 537-553, October.
    5. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    6. Kogan, Konstantin & Herbon, Avi, 2008. "Production under periodic demand update prior to a single selling season: A decomposition approach," European Journal of Operational Research, Elsevier, vol. 184(1), pages 133-146, January.
    7. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    8. Hadas, Yuval & Shnaiderman, Matan, 2012. "Public-transit frequency setting using minimum-cost approach with stochastic demand and travel time," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1068-1084.
    9. Shoaib M. Chowdhury & Steven I-Jy Chien, 2002. "Intermodal Transit System Coordination," Transportation Planning and Technology, Taylor & Francis Journals, vol. 25(4), pages 257-287, January.
    10. James Strathman & Thomas Kimpel & Kenneth Dueker & Richard Gerhart & Steve Callas, 2002. "Evaluation of transit operations: data applications of Tri-Met's automated Bus Dispatching System," Transportation, Springer, vol. 29(3), pages 321-345, August.
    11. Oldfield, R. H. & Bly, P. H., 1988. "An analytic investigation of optimal bus size," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 319-337, October.
    12. Tétreault, Paul R. & El-Geneidy, Ahmed M., 2010. "Estimating bus run times for new limited-stop service using archived AVL and APC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 390-402, July.
    13. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    14. Han, Anthony F. & Wilson, Nigel H. M., 1982. "The allocation of buses in heavily utilized networks with overlapping routes," Transportation Research Part B: Methodological, Elsevier, vol. 16(3), pages 221-232, June.
    15. Jara-Díaz, Sergio & Tirachini, Alejandro & Cortés, Cristián E., 2008. "Modeling public transport corridors with aggregate and disaggregate demand," Journal of Transport Geography, Elsevier, vol. 16(6), pages 430-435.
    16. Weatherford, LR & Pfeifer, PE, 1994. "The economic value of using advance booking of orders," Omega, Elsevier, vol. 22(1), pages 105-111, January.
    17. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    18. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    19. Yulin Liu & Jonathan Bunker & Luis Ferreira, 2010. "Transit Users’ Route‐Choice Modelling in Transit Assignment: A Review," Transport Reviews, Taylor & Francis Journals, vol. 30(6), pages 753-769, March.
    20. Franz J. M. Salzborn, 1972. "Optimum Bus Scheduling," Transportation Science, INFORMS, vol. 6(2), pages 137-148, May.
    21. Delle Site, Paolo & Filippi, Francesco, 1998. "Service optimization for bus corridors with short-turn strategies and variable vehicle size," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 19-38, January.
    22. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Jinjun & Yang, Yifan & Qi, Yong, 2018. "A hybrid algorithm for Urban transit schedule optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 745-755.
    2. Chen, Feng & Peng, Haorong & Ding, Wenlong & Ma, Xiaoxiang & Tang, Daizhong & Ye, Yipeng, 2021. "Customized bus passenger boarding and deboarding planning optimization model with the least number of contacts between passengers during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    3. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.
    4. Weiya Chen & Hengpeng Zhang & Chunxiao Chen & Xiaofan Wei, 2021. "An Integrated Bus Holding and Speed Adjusting Strategy Considering Passenger’s Waiting Time Perceptions," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    5. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
    6. Li, Changle & Ma, Jiao & Luan, Tom H. & Zhou, Xun & Xiong, Lei, 2018. "An incentive-based optimizing strategy of service frequency for an urban rail transit system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 106-122.
    7. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    8. Wenliang Zhou & Wenzhuang Fan & Xiaorong You & Lianbo Deng, 2019. "Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions," Sustainability, MDPI, vol. 11(18), pages 1-34, September.
    9. Høyem, Harald & Odeck, James, 2020. "Optimal public transit frequency under stochastic demand and fixed vehicle size: Application in the Norwegian car ferry sector," Research in Transportation Economics, Elsevier, vol. 82(C).
    10. Seda Yanık & Salim Yılmaz, 2023. "Optimal design of a bus route with short-turn services," Public Transport, Springer, vol. 15(1), pages 169-197, March.
    11. Jiang, Mei & Jiang, Changmin & Xiao, Yi-bin & Wang, Chunan, 2021. "Air-HSR cooperation: Impacts on service frequency and environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    12. An, Qinhe & Fu, Xiao & Huang, Di & Cheng, Qixiu & Liu, Zhiyuan, 2020. "Analysis of adding-runs strategy for peak-hour regular bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    13. David Schmaranzer & Roland Braune & Karl F. Doerner, 2020. "Population-based simulation optimization for urban mass rapid transit networks," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 767-805, December.
    14. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    15. Wu, Weitiao & Li, Peng & Liu, Ronghui & Jin, Wenzhou & Yao, Baozhen & Xie, Yuanqi & Ma, Changxi, 2020. "Predicting peak load of bus routes with supply optimization and scaled Shepard interpolation: A newsvendor model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    16. Weiya Chen & Xin Liu & Dingfang Chen & Xin Pan, 2019. "Setting Headways on a Bus Route under Uncertain Conditions," Sustainability, MDPI, vol. 11(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    3. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    4. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    5. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    6. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    7. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    8. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    9. Høyem, Harald & Odeck, James, 2020. "Optimal public transit frequency under stochastic demand and fixed vehicle size: Application in the Norwegian car ferry sector," Research in Transportation Economics, Elsevier, vol. 82(C).
    10. Weiya Chen & Xin Liu & Dingfang Chen & Xin Pan, 2019. "Setting Headways on a Bus Route under Uncertain Conditions," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    11. Gwilliam, Ken, 2008. "A review of issues in transit economics," Research in Transportation Economics, Elsevier, vol. 23(1), pages 4-22, January.
    12. Jara-Díaz, Sergio & Tirachini, Alejandro & Cortés, Cristián E., 2008. "Modeling public transport corridors with aggregate and disaggregate demand," Journal of Transport Geography, Elsevier, vol. 16(6), pages 430-435.
    13. Benjamin Otto, 2019. "Aggregation techniques for frequency assignment in public transportation," Public Transport, Springer, vol. 11(1), pages 51-87, June.
    14. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    15. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    16. Zhang, Junlin & Yang, Hai & Lindsey, Robin & Li, Xinwei, 2020. "Modeling and managing congested transit service with heterogeneous users under monopoly," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 249-266.
    17. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    18. Clifton, Geoffrey T. & Rose, John M., 2013. "A simulation of the simple Mohring model to predict patronage and value of resources consumed for enhanced bus services," Research in Transportation Economics, Elsevier, vol. 39(1), pages 259-269.
    19. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    20. Verbas, İ. Ömer & Mahmassani, Hani S., 2015. "Exploring trade-offs in frequency allocation in a transit network using bus route patterns: Methodology and application to large-scale urban systems," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 577-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:71:y:2015:i:c:p:85-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.