IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i5p828-844.html
   My bibliography  Save this article

Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors

Author

Listed:
  • Tirachini, Alejandro
  • Hensher, David A.

Abstract

Microeconomic optimisation of scheduled public transport operations has traditionally focused on finding optimal values for the frequency of service, capacity of vehicles, number of lines and distance between stops. In addition, however, there exist other elements in the system that present a trade-off between the interests of users and operators that have not received attention in the literature, such as the optimal selection of a fare payment system and a designed running speed (i.e., the cruising speed that buses maintain in between two consecutive stops). Alternative fare payment methods (e.g., on-board and off-board, payment by cash, magnetic strip or smart card) have different boarding times and capital costs, with the more efficient systems such as a contactless smart card imposing higher amounts of capital investment. Based on empirical data from several Bus Rapid Transit systems around the world, we also find that there is a positive relationship between infrastructure cost per kilometre and commercial speed (including stops), achieved by the buses, which we further postulate as a linear relationship between infrastructure investment and running speed. Given this context, we develop a microeconomic model for the operation of a bus corridor that minimises total cost (users and operator) and has five decision variables: frequency, capacity of vehicles, station spacing, fare payment system and running speed, thus extending the traditional framework. Congestion, induced by bus frequency, plays an important role in the design of the system, as queues develop behind high demand bus stops when the frequency is high. We show that (i) an off-board fare payment system is the most cost effective in the majority of circumstances; (ii) bus congestion results in decreased frequency while fare and bus capacity increase, and (iii) the optimal running speed grows with the logarithm of demand.

Suggested Citation

  • Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:5:p:828-844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(11)00020-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akçelik, Rahmi & Rouphail, Nagui M., 1993. "Estimation of delays at traffic signals for variable demand conditions," Transportation Research Part B: Methodological, Elsevier, vol. 27(2), pages 109-131, April.
    2. George Kocur & Chris Hendrickson, 1982. "Design of Local Bus Service with Demand Equilibration," Transportation Science, INFORMS, vol. 16(2), pages 149-170, May.
    3. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    4. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    5. Glaister, Stephen & Lewis, Davis, 1978. "An integrated fares policy for transport in London," Journal of Public Economics, Elsevier, vol. 9(3), pages 341-355, June.
    6. Oldfield, R. H. & Bly, P. H., 1988. "An analytic investigation of optimal bus size," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 319-337, October.
    7. Kraus, Marvin, 1991. "Discomfort externalities and marginal cost transit fares," Journal of Urban Economics, Elsevier, vol. 29(2), pages 249-259, March.
    8. Fernández L., J. Enrique & de Cea Ch., Joaqui­n & de Grange C., Louis, 2005. "Production costs, congestion, scope and scale economies in urban bus transportation corridors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 383-403, June.
    9. Danielis, Romeo & Marcucci, Edoardo, 2002. "Bottleneck road congestion pricing with a competing railroad service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 379-388, September.
    10. Kijung Ahn, 2009. "Road Pricing and Bus Service Policies," Journal of Transport Economics and Policy, University of Bath, vol. 43(1), pages 25-53, January.
    11. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    12. Rodrigo Fernandez & Rosemarie Planzer, 2002. "On the capacity of bus transit systems," Transport Reviews, Taylor & Francis Journals, vol. 22(3), pages 267-293, January.
    13. Sergio R. Jara-Díaz & Antonio Gschwender, 2003. "From the Single Line Model to the Spatial Structure of Transit Services: Corridors or Direct?," Journal of Transport Economics and Policy, University of Bath, vol. 37(2), pages 261-277, May.
    14. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Restating modal investment priority with an improved model for public transport analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1148-1168, November.
    15. Pedersen, Pål Andreas, 2003. "On the optimal fare policies in urban transportation," Transportation Research Part B: Methodological, Elsevier, vol. 37(5), pages 423-435, June.
    16. Alejandro Tirachini & Cristián Cortés & Sergio Jara-Díaz, 2011. "Optimal design and benefits of a short turning strategy for a bus corridor," Transportation, Springer, vol. 38(1), pages 169-189, January.
    17. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    18. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    19. Glaister, Stephen, 1974. "Generalised Consumer Surplus and Public Transport Pricing," Economic Journal, Royal Economic Society, vol. 84(336), pages 849-867, December.
    20. Leiva, Carola & Muñoz, Juan Carlos & Giesen, Ricardo & Larrain, Homero, 2010. "Design of limited-stop services for an urban bus corridor with capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1186-1201, December.
    21. Delle Site, Paolo & Filippi, Francesco, 1998. "Service optimization for bus corridors with short-turn strategies and variable vehicle size," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 19-38, January.
    22. David Hensher & Thomas Golob, 2008. "Bus rapid transit systems: a comparative assessment," Transportation, Springer, vol. 35(4), pages 501-518, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    3. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    4. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    5. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    6. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    7. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    8. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    9. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    10. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    11. Gwilliam, Ken, 2008. "A review of issues in transit economics," Research in Transportation Economics, Elsevier, vol. 23(1), pages 4-22, January.
    12. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    13. De Borger, Bruno & Proost, Stef, 2015. "The political economy of public transport pricing and supply decisions," Economics of Transportation, Elsevier, vol. 4(1), pages 95-109.
    14. Sepúlveda, Juan Pablo & Galilea, Patricia, 2020. "How do different payment schemes to operators affect public transport concessions? A microeconomic model," Transport Policy, Elsevier, vol. 93(C), pages 27-35.
    15. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    16. Basso, Leonardo J. & Jara-Díaz, Sergio R., 2012. "Integrating congestion pricing, transit subsidies and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 890-900.
    17. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    18. Zhang, Junlin & Yang, Hai & Lindsey, Robin & Li, Xinwei, 2020. "Modeling and managing congested transit service with heterogeneous users under monopoly," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 249-266.
    19. Guo, Qianwen & Sun, Yanshuo & Schonfeld, Paul & Li, Zhongfei, 2021. "Time-dependent transit fare optimization with elastic and spatially distributed demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 353-378.
    20. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2016. "Optimal public transport networks for a general urban structure," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 298-313.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:5:p:828-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.