IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v46y2012i9p1202-1217.html
   My bibliography  Save this article

How much can holding and/or limiting boarding improve transit performance?

Author

Listed:
  • Delgado, Felipe
  • Munoz, Juan Carlos
  • Giesen, Ricardo

Abstract

Bus bunching affects transit operations by increasing passenger waiting times and its variability. This work proposes a new mathematical programming model to control vehicles operating on a transit corridor minimizing total delays. The model can handle a heterogeneous fleet of vehicles with different capacities without using binary variables, which make solution times compatible with real-time requirements. Two control policies are studied within a rolling horizon framework: (i) vehicle holding (HRT), which can be applied at any stop and (ii) holding combined with boarding limits (HBLRT), in which the number of boarding passengers at any stop can be limited in order to increase operational speed. Both strategies are evaluated in a simulation environment under different operational conditions. The results show that HBLRT and HRT outperform other benchmark control strategies in all scenarios, with savings of excess waiting time of up to 77% and very low variability in performance. HBLRT shows significant benefits in relation to HRT only under short headway operation and high passenger demand. Moreover, our results suggest implementing boarding limits only when the next arriving vehicle is nearby. Interestingly, in these cases HBLRT not only reduces an extra 6.3% the expected waiting time in comparison with HRT, but also outperforms other control schemes in terms of comfort and reliability to both passengers and operators. To passengers HBLRT provide a more balanced load factor across vehicles yielding a more comfortable experience. To operators the use of boarding limits speed up vehicles reducing the average cycle time and its variability, which is key for a smooth operation at terminals.

Suggested Citation

  • Delgado, Felipe & Munoz, Juan Carlos & Giesen, Ricardo, 2012. "How much can holding and/or limiting boarding improve transit performance?," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1202-1217.
  • Handle: RePEc:eee:transb:v:46:y:2012:i:9:p:1202-1217
    DOI: 10.1016/j.trb.2012.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261512000653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2012.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    2. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    3. Jiamin Zhao & Maged Dessouky & Satish Bukkapatnam, 2006. "Optimal Slack Time for Schedule-Based Transit Operations," Transportation Science, INFORMS, vol. 40(4), pages 529-539, November.
    4. Arnold Barnett, 1974. "On Controlling Randomness in Transit Operations," Transportation Science, INFORMS, vol. 8(2), pages 102-116, May.
    5. Aichong Sun & Mark Hickman, 2008. "The Holding Problem at Multiple Holding Stations," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 339-359, Springer.
    6. Mark D. Hickman, 2001. "An Analytic Stochastic Model for the Transit Vehicle Holding Problem," Transportation Science, INFORMS, vol. 35(3), pages 215-237, August.
    7. Daganzo, Carlos F. & Pilachowski, Josh, 2011. "Reducing bunching with bus-to-bus cooperation," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 267-277, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    2. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    3. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    4. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    5. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    6. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    7. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    8. Berrebi, Simon J. & Watkins, Kari E. & Laval, Jorge A., 2015. "A real-time bus dispatching policy to minimize passenger wait on a high frequency route," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 377-389.
    9. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    10. Minyu Shen & Weihua Gu & Michael J. Cassidy & Yongjie Lin & Wei Ni, 2024. "A vicious cycle along busy bus corridors and how to abate it," Papers 2403.08230, arXiv.org.
    11. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    12. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    13. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    14. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    15. Liang, Shidong & Zhao, Shuzhi & Lu, Chunxiu & Ma, Minghui, 2016. "A self-adaptive method to equalize headways: Numerical analysis and comparison," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 33-43.
    16. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    17. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    18. Sun, Yanshuo & Schonfeld, Paul, 2016. "Holding decisions for correlated vehicle arrivals at intermodal freight transfer terminals," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 218-240.
    19. Daganzo, Carlos F. & Pilachowski, Josh, 2009. "Reducing bunching with bus-to-bus cooperation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0551g0zw, Institute of Transportation Studies, UC Berkeley.
    20. Khan, Zaid Saeed & Menéndez, Mónica, 2023. "Bus splitting and bus holding: A new strategy using autonomous modular buses for preventing bus bunching," Transportation Research Part A: Policy and Practice, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:9:p:1202-1217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.