IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i5p419-434.html
   My bibliography  Save this article

Integrating short turning and deadheading in the optimization of transit services

Author

Listed:
  • Cortés, Cristián E.
  • Jara-Díaz, Sergio
  • Tirachini, Alejandro

Abstract

Urban transit demand exhibits peaks in time and space, which can be efficiently served by means of different fleets, increasing frequencies in those groups of stops with larger passenger inflow. In this paper we develop a model that combines short turning and deadheading in an integrated strategy for a single transit line, where the optimization variables are both of a continuous and discrete nature: frequencies within and outside the high demand zone, vehicle capacities, and those stations where the strategy begins and ends. We show that closed solutions can be obtained for frequencies in some cases, which resembles the classical "square root rule". Unlike the existing literature that compares different strategies with a given normal operation (no strategy - single frequency), we use an optimized base case, in order to assess the potential benefits of the integrated strategy on a fair basis. We found that the integrated strategy can be justified in many cases with mixed load patterns, where unbalances within and between directions are observed. In general, the short turning strategy may yield large benefits in terms of total cost reductions, while low benefits are associated with deadheading, due to the extra cost of running empty vehicles in some sections.

Suggested Citation

  • Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:5:p:419-434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(11)00031-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    2. Peter G. Furth, 1986. "Zonal Route Design for Transit Corridors," Transportation Science, INFORMS, vol. 20(1), pages 1-12, February.
    3. Avishai Ceder & Helman I. Stern, 1981. "Deficit Function Bus Scheduling with Deadheading Trip Insertions for Fleet Size Reduction," Transportation Science, INFORMS, vol. 15(4), pages 338-363, November.
    4. Oldfield, R. H. & Bly, P. H., 1988. "An analytic investigation of optimal bus size," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 319-337, October.
    5. Kraus, Marvin, 1991. "Discomfort externalities and marginal cost transit fares," Journal of Urban Economics, Elsevier, vol. 29(2), pages 249-259, March.
    6. Alejandro Tirachini & Cristián Cortés & Sergio Jara-Díaz, 2011. "Optimal design and benefits of a short turning strategy for a bus corridor," Transportation, Springer, vol. 38(1), pages 169-189, January.
    7. Eberlein, Xu Jun & Wilson, Nigel H. M. & Barnhart, Cynthia & Bernstein, David, 1998. "The real-time deadheading problem in transit operations control," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 77-100, February.
    8. William C. Jordan & Mark A. Turnquist, 1979. "Zone Scheduling of Bus Routes to Improve Service Reliability," Transportation Science, INFORMS, vol. 13(3), pages 242-268, August.
    9. Jara-Díaz, Sergio & Tirachini, Alejandro & Cortés, Cristián E., 2008. "Modeling public transport corridors with aggregate and disaggregate demand," Journal of Transport Geography, Elsevier, vol. 16(6), pages 430-435.
    10. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    11. Leiva, Carola & Muñoz, Juan Carlos & Giesen, Ricardo & Larrain, Homero, 2010. "Design of limited-stop services for an urban bus corridor with capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1186-1201, December.
    12. Vijayaraghavan, T. A. S. & Anantharamaiah, K. M., 1995. "Fleet assignment strategies in urban transportation using express and partial services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 157-171, March.
    13. Peter G. Furth, 1985. "Alternating Deadheading in Bus Route Operations," Transportation Science, INFORMS, vol. 19(1), pages 13-28, February.
    14. Delle Site, Paolo & Filippi, Francesco, 1998. "Service optimization for bus corridors with short-turn strategies and variable vehicle size," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 19-38, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
    2. Wang, Wensi & Yu, Bin & Zhou, Yu, 2024. "A real-time synchronous dispatching and recharging strategy for multi-line electric bus systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    4. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    5. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    6. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    7. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    8. Asplund, Disa & Pyddoke, Roger, 2020. "Optimal fares and frequencies for bus services in a small city," Research in Transportation Economics, Elsevier, vol. 80(C).
    9. Chen, Jingxu & Liu, Zhiyuan & Wang, Shuaian & Chen, Xuewu, 2018. "Continuum approximation modeling of transit network design considering local route service and short-turn strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 165-188.
    10. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    11. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    12. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    14. Alejandro Tirachini & David Hensher & Michiel Bliemer, 2014. "Accounting for travel time variability in the optimal pricing of cars and buses," Transportation, Springer, vol. 41(5), pages 947-971, September.
    15. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    16. Gkiotsalitis, K. & Schmidt, M.E. & van der Hurk, E., 2021. "Subline frequency setting for autonomous minibusses under demand uncertainty," ERIM Report Series Research in Management ERS-2021-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Tirachini & Cristián Cortés & Sergio Jara-Díaz, 2011. "Optimal design and benefits of a short turning strategy for a bus corridor," Transportation, Springer, vol. 38(1), pages 169-189, January.
    2. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    3. Liang Gong & Yinzhen Li & Dejie Xu, 2019. "Combinational Scheduling Model Considering Multiple Vehicle Sizes," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    4. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    5. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    6. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    7. Yu, Bin & Yang, Zhongzhen & Li, Shan, 2012. "Real-time partway deadheading strategy based on transit service reliability assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1265-1279.
    8. Herbon, Avi & Hadas, Yuval, 2015. "Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 85-99.
    9. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.
    10. Larrain, Homero & Muñoz, Juan Carlos & Giesen, Ricardo, 2015. "Generation and design heuristics for zonal express services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 201-212.
    11. Gwilliam, Ken, 2008. "A review of issues in transit economics," Research in Transportation Economics, Elsevier, vol. 23(1), pages 4-22, January.
    12. Jara-Díaz, Sergio & Tirachini, Alejandro & Cortés, Cristián E., 2008. "Modeling public transport corridors with aggregate and disaggregate demand," Journal of Transport Geography, Elsevier, vol. 16(6), pages 430-435.
    13. Chunyan Tang & Avishai Ceder & Ying-En Ge, 2018. "Optimal public-transport operational strategies to reduce cost and vehicle’s emission," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    14. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    15. Soto, Guillermo & Larrain, Homero & Muñoz, Juan Carlos, 2017. "A new solution framework for the limited-stop bus service design problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 67-85.
    16. Zhang, Junlin & Yang, Hai & Lindsey, Robin & Li, Xinwei, 2020. "Modeling and managing congested transit service with heterogeneous users under monopoly," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 249-266.
    17. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    18. David Canca & Eva Barrena & Gilbert Laporte & Francisco A. Ortega, 2016. "A short-turning policy for the management of demand disruptions in rapid transit systems," Annals of Operations Research, Springer, vol. 246(1), pages 145-166, November.
    19. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    20. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:5:p:419-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.