Incorporating trip chaining within online demand estimation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.trb.2019.05.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
- M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
- Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
- Muhammad Adnan, 2010. "Linking Macro-level Dynamic Network Loading Models with Scheduling of Individual’s Daily Activity–Travel Pattern," Chapters, in: Chris M.J. Tampere & Francesco Viti & Lambertus H. (Ben) Immers (ed.), New Developments in Transport Planning, chapter 13, Edward Elgar Publishing.
- K. Ashok & M. E. Ben-Akiva, 2002. "Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows," Transportation Science, INFORMS, vol. 36(2), pages 184-198, May.
- Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990.
"Economics of a bottleneck,"
Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
- Richard Arnott & Andre de Palma & Robin Lindsey, 1985. "Economics of a Bottleneck," Working Paper 636, Economics Department, Queen's University.
- Zhou, Xuesong & Mahmassani, Hani S., 2007. "A structural state space model for real-time traffic origin-destination demand estimation and prediction in a day-to-day learning framework," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 823-840, October.
- Gunnar Flötteröd & Yu Chen & Kai Nagel, 2012. "Behavioral Calibration and Analysis of a Large-Scale Travel Microsimulation," Networks and Spatial Economics, Springer, vol. 12(4), pages 481-502, December.
- Cantelmo, Guido & Viti, Francesco & Cipriani, Ernesto & Nigro, Marialisa, 2018. "A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 303-320.
- Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
- Ennio Cascetta & Domenico Inaudi & Gérald Marquis, 1993. "Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts," Transportation Science, INFORMS, vol. 27(4), pages 363-373, November.
- K. Ashok & M. E. Ben-Akiva, 2000. "Alternative Approaches for Real-Time Estimation and Prediction of Time-Dependent Origin–Destination Flows," Transportation Science, INFORMS, vol. 34(1), pages 21-36, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ren, Yilong & Lan, Zhengxing & Yu, Haiyang & Jiao, Gangxin, 2022. "Analysis and prediction of charging behaviors for private battery electric vehicles with regular commuting: A case study in Beijing," Energy, Elsevier, vol. 253(C).
- Kumarage, Sakitha & Yildirimoglu, Mehmet & Zheng, Zuduo, 2023. "A hybrid modelling framework for the estimation of dynamic origin–destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
- Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yong Lin, 2023. "Models, Algorithms and Applications of DynasTIM Real-Time Traffic Simulation System," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
- Simonelli, Fulvio & Marzano, Vittorio & Papola, Andrea & Vitiello, Iolanda, 2012. "A network sensor location procedure accounting for o–d matrix estimate variability," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1624-1638.
- Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
- Cantelmo, Guido & Viti, Francesco & Cipriani, Ernesto & Nigro, Marialisa, 2018. "A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 303-320.
- Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
- Chao Sun & Yulin Chang & Xin Luan & Qiang Tu & Wenyun Tang, 2020. "Origin-Destination Demand Reconstruction Using Observed Travel Time under Congested Network," Networks and Spatial Economics, Springer, vol. 20(3), pages 733-755, September.
- Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
- M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
- Tangjian Wei & Feng Shi & Guangming Xu, 2019. "Estimation of Time-Varying Passenger Demand for High Speed Rail System," Complexity, Hindawi, vol. 2019, pages 1-24, March.
- Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
- Nie, Yu (Marco) & Zhang, H.M., 2008. "A variational inequality formulation for inferring dynamic origin-destination travel demands," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 635-662, August.
- Kumarage, Sakitha & Yildirimoglu, Mehmet & Zheng, Zuduo, 2023. "A hybrid modelling framework for the estimation of dynamic origin–destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
- Zhou, Xuesong & Mahmassani, Hani S., 2007. "A structural state space model for real-time traffic origin-destination demand estimation and prediction in a day-to-day learning framework," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 823-840, October.
- Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.
- Cantelmo, Guido & Viti, Francesco, 2019. "Incorporating activity duration and scheduling utility into equilibrium-based Dynamic Traffic Assignment," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 365-390.
- Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
- D'Acierno, Luca & Cartenì, Armando & Montella, Bruno, 2009. "Estimation of urban traffic conditions using an Automatic Vehicle Location (AVL) System," European Journal of Operational Research, Elsevier, vol. 196(2), pages 719-736, July.
- A. Stathopoulos & T. Tsekeris, 2003. "Framework for analysing reliability and information degradation of demand matrices in extended transport networks," Transport Reviews, Taylor & Francis Journals, vol. 23(1), pages 89-103, January.
- Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
- Hu, Shou-Ren & Peeta, Srinivas & Chu, Chun-Hsiao, 2009. "Identification of vehicle sensor locations for link-based network traffic applications," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 873-894, September.
More about this item
Keywords
OD estimation; Online calibration; Simulation-based optimization; State-space modeling; Kalman Filter; Activities; Trip chain;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:132:y:2020:i:c:p:171-187. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.