IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222010635.html
   My bibliography  Save this article

Analysis and prediction of charging behaviors for private battery electric vehicles with regular commuting: A case study in Beijing

Author

Listed:
  • Ren, Yilong
  • Lan, Zhengxing
  • Yu, Haiyang
  • Jiao, Gangxin

Abstract

Battery electric vehicles (BEVs) assume a critical role in the promotion of transportation electrification. Accurate analysis and prediction of BEVs charging behaviors are essential to solving the issues, such as electricity supply imbalance stemming from the BEVs increasing volume. To achieve that, the agent-based trip chain model (ABTCM) and nested logit model (NL) are proposed in this study based on meter-level real-world data. In our investigation, not only the general charging patterns including trip chains distributions and dynamic attributes, but also the different charging strategies influencing mechanisms are profoundly estimated. The results demonstrate that most BEVs dispense with charging in the chain during one-day trips and users generally hold moderate range psychology before departure. For charging patterns, the longer people travel, the more inclined they are to adopt the fast charging strategy. The start moment SOC, consumed SOC, travel distance, the speed and weather, as well as all last charging status, are common significant factors for both slow charging and fast charging. The argument reveals that it is more applicable to consider charging scene context when exploring BEVs charging behaviors. Furthermore, the task of charging behaviors is conducted by the united NL model, which displays the effectiveness with accessible accuracy.

Suggested Citation

  • Ren, Yilong & Lan, Zhengxing & Yu, Haiyang & Jiao, Gangxin, 2022. "Analysis and prediction of charging behaviors for private battery electric vehicles with regular commuting: A case study in Beijing," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010635
    DOI: 10.1016/j.energy.2022.124160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cantelmo, Guido & Qurashi, Moeid & Prakash, A. Arun & Antoniou, Constantinos & Viti, Francesco, 2020. "Incorporating trip chaining within online demand estimation," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 171-187.
    2. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
    3. Qin, Huanmei & Gao, Jianqiang & Zhang, Guohui & Chen, Yanyan & Wu, Songhua, 2017. "Nested logit model formation to analyze airport parking behavior based on stated preference survey studies," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 164-175.
    4. He, Xiaoyi & Wu, Ye & Zhang, Shaojun & Tamor, Michael A. & Wallington, Timothy J. & Shen, Wei & Han, Weijian & Fu, Lixin & Hao, Jiming, 2016. "Individual trip chain distributions for passenger cars: Implications for market acceptance of battery electric vehicles and energy consumption by plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 180(C), pages 650-660.
    5. Feng, Xiaoyan & Sun, Huijun & Wu, Jianjun & Liu, Zhiyuan & Lv, Ying, 2020. "Trip chain based usage patterns analysis of the round-trip carsharing system: A case study in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 190-203.
    6. Anciaes, Paulo & Metcalfe, Paul & Heywood, Chris & Sheldon, Rob, 2019. "The impact of fare complexity on rail demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 224-238.
    7. Xiang, Yue & Jiang, Zhuozhen & Gu, Chenghong & Teng, Fei & Wei, Xiangyu & Wang, Yang, 2019. "Electric vehicle charging in smart grid: A spatial-temporal simulation method," Energy, Elsevier, vol. 189(C).
    8. Zhou, Yue & Wen, Ruoxi & Wang, Hewu & Cai, Hua, 2020. "Optimal battery electric vehicles range: A study considering heterogeneous travel patterns, charging behaviors, and access to charging infrastructure," Energy, Elsevier, vol. 197(C).
    9. Bi, Jun & Wang, Yongxing & Sai, Qiuyue & Ding, Cong, 2019. "Estimating remaining driving range of battery electric vehicles based on real-world data: A case study of Beijing, China," Energy, Elsevier, vol. 169(C), pages 833-843.
    10. Trencher, Gregory & Taeihagh, Araz & Yarime, Masaru, 2020. "Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan," Energy Policy, Elsevier, vol. 142(C).
    11. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    12. Chung, Yu-Wei & Khaki, Behnam & Li, Tianyi & Chu, Chicheng & Gadh, Rajit, 2019. "Ensemble machine learning-based algorithm for electric vehicle user behavior prediction," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perugu, Harikishan & Collier, Sonya & Tan, Yi & Yoon, Seungju & Herner, Jorn, 2023. "Characterization of battery electric transit bus energy consumption by temporal and speed variation," Energy, Elsevier, vol. 263(PC).
    2. Sprei, Frances & Kempton, Willett, 2024. "Mental models guide electric vehicle charging," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    2. Han, Yan & Zhang, Tiantian & Wang, Meng, 2020. "Holiday travel behavior analysis and empirical study with Integrated Travel Reservation Information usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 130-151.
    3. Guang Yang & Yan Han & Hao Gong & Tiantian Zhang, 2020. "Spatial-Temporal Response Patterns of Tourist Flow under Real-Time Tourist Flow Diversion Scheme," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    4. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    5. Aixin Yang & Guiqing Zhang & Chenlu Tian & Wei Peng & Yechun Liu, 2024. "Charging Behavior Portrait of Electric Vehicle Users Based on Fuzzy C-Means Clustering Algorithm," Energies, MDPI, vol. 17(7), pages 1-27, March.
    6. Liu, Yuechen Sophia & Tayarani, Mohammad & Gao, H. Oliver, 2022. "An activity-based travel and charging behavior model for simulating battery electric vehicle charging demand," Energy, Elsevier, vol. 258(C).
    7. Xiangyu Luo & Rui Qiu, 2020. "Electric Vehicle Charging Station Location towards Sustainable Cities," IJERPH, MDPI, vol. 17(8), pages 1-22, April.
    8. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    9. Fu, Zhengtang & Dong, Peiwu & Ju, Yanbing & Gan, Zhenkun & Zhu, Min, 2022. "An intelligent green vehicle management system for urban food reliably delivery:A case study of Shanghai, China," Energy, Elsevier, vol. 257(C).
    10. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    11. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    12. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    13. Jie Gao & Dick Ettema & Marco Helbich & Carlijn B. M. Kamphuis, 2019. "Travel mode attitudes, urban context, and demographics: do they interact differently for bicycle commuting and cycling for other purposes?," Transportation, Springer, vol. 46(6), pages 2441-2463, December.
    14. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    15. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    16. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    17. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    18. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    19. Ahmad Almaghrebi & Kevin James & Fares Al Juheshi & Mahmoud Alahmad, 2024. "Insights into Household Electric Vehicle Charging Behavior: Analysis and Predictive Modeling," Energies, MDPI, vol. 17(4), pages 1-20, February.
    20. Jiang, Xiaodan & Fan, Houming & Luo, Meifeng & Xu, Zhenlin, 2020. "Strategic port competition in multimodal network development considering shippers’ choice," Transport Policy, Elsevier, vol. 90(C), pages 68-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.