IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1568941.html
   My bibliography  Save this article

Estimation of Time-Varying Passenger Demand for High Speed Rail System

Author

Listed:
  • Tangjian Wei
  • Feng Shi
  • Guangming Xu

Abstract

Passenger demand plays an important role in railway operation and organization, and this paper aims to estimate passenger time-varying demand by simulating the ticket-booking process for High Speed Rail (HSR) system. The ticket-booking process of each OD pair can be partition into discrete booking phases by the times when the tickets of any itinerary had sold out. The ticket booking volume of each itinerary is reversely assigned to its corresponding expected departure intervals to obtain the time-varying demand in each booking phase using the rooftop model, and the total time-varying demand are estimated by summing the time-varying demand distributions in all booking phases. Only with the data about the itinerary flow, the precedence relationship is introduced to constrain the ticket sold-out order of all itineraries for each OD pair. Based on the precedence relationships of itineraries, two typical situations are proposed, in which the Single Booking Phase Reverse Assignment (SBPRA) algorithm and the Multiple Booking Phases Reverse Assignment (MBPRA) algorithm are proposed to estimate the time-varying demand respectively. Case analysis on OD pair Beijing-Shanghai are presented, and the validity analysis demonstrates that the error rates of SBPRA algorithm and MBPRA algorithm are 8.64% and 6.37%, respectively.

Suggested Citation

  • Tangjian Wei & Feng Shi & Guangming Xu, 2019. "Estimation of Time-Varying Passenger Demand for High Speed Rail System," Complexity, Hindawi, vol. 2019, pages 1-24, March.
  • Handle: RePEc:hin:complx:1568941
    DOI: 10.1155/2019/1568941
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1568941.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1568941.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1568941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    2. Goossens, Jan-Willem & van Hoesel, Stan & Kroon, Leo, 2006. "On solving multi-type railway line planning problems," European Journal of Operational Research, Elsevier, vol. 168(2), pages 403-424, January.
    3. Mor Kaspi & Tal Raviv, 2013. "Service-Oriented Line Planning and Timetabling for Passenger Trains," Transportation Science, INFORMS, vol. 47(3), pages 295-311, August.
    4. M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
    5. Escobari, Diego, 2014. "Estimating dynamic demand for airlines," Economics Letters, Elsevier, vol. 124(1), pages 26-29.
    6. Li, Yuwei & Cassidy, Michael J., 2007. "A generalized and efficient algorithm for estimating transit route ODs from passenger counts," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 114-125, January.
    7. Wen, Chieh-Hua & Chen, Po-Hung, 2017. "Passenger booking timing for low-cost airlines: A continuous logit approach," Journal of Air Transport Management, Elsevier, vol. 64(PA), pages 91-99.
    8. Li, Baibing, 2009. "Markov models for Bayesian analysis about transit route origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 301-310, March.
    9. Hazelton, Martin L., 2008. "Statistical inference for time varying origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 542-552, July.
    10. Zhou, Xuesong & Mahmassani, Hani S., 2007. "A structural state space model for real-time traffic origin-destination demand estimation and prediction in a day-to-day learning framework," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 823-840, October.
    11. Jan-Willem Goossens & Stan van Hoesel & Leo Kroon, 2004. "A Branch-and-Cut Approach for Solving Railway Line-Planning Problems," Transportation Science, INFORMS, vol. 38(3), pages 379-393, August.
    12. Gustavo Vulcano & Garrett van Ryzin & Richard Ratliff, 2012. "Estimating Primary Demand for Substitutable Products from Sales Transaction Data," Operations Research, INFORMS, vol. 60(2), pages 313-334, April.
    13. Barry C. Smith & John F. Leimkuhler & Ross M. Darrow, 1992. "Yield Management at American Airlines," Interfaces, INFORMS, vol. 22(1), pages 8-31, February.
    14. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    15. Chiou, Yu-Chiun & Liu, Chia-Hsin, 2016. "Advance purchase behaviors of air tickets," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 62-69.
    16. Fu, Huiling & Nie, Lei & Meng, Lingyun & Sperry, Benjamin R. & He, Zhenhuan, 2015. "A hierarchical line planning approach for a large-scale high speed rail network: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 61-83.
    17. K. Ashok & M. E. Ben-Akiva, 2000. "Alternative Approaches for Real-Time Estimation and Prediction of Time-Dependent Origin–Destination Flows," Transportation Science, INFORMS, vol. 34(1), pages 21-36, February.
    18. Chiou, Yu-Chiun & Liu, Chia-Hsin, 2016. "Advance purchase behaviors of air passengers: A continuous logit model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 474-484.
    19. Li, Yuwei, 2007. "A generalized and efficient algorithm for estimating transit route ODs from passenger counts," University of California Transportation Center, Working Papers qt17m7k4vm, University of California Transportation Center.
    20. Wong, S. C. & Tong, C. O., 1998. "Estimation of time-dependent origin-destination matrices for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Zhao & Xiwei Mi & Zhenyi Li, 2019. "A Stop-Probability Approach for O-D Service Frequency on High-Speed Railway Lines," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    2. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    3. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    4. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    5. Kumar, Anshuman Anjani & Kang, Jee Eun & Kwon, Changhyun & Nikolaev, Alexander, 2016. "Inferring origin-destination pairs and utility-based travel preferences of shared mobility system users in a multi-modal environment," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 270-291.
    6. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    7. Tatsuki Yamauchi & Mizuyo Takamatsu & Shinji Imahori, 2023. "Optimizing train stopping patterns for congestion management," Public Transport, Springer, vol. 15(1), pages 1-29, March.
    8. Chao Sun & Yulin Chang & Xin Luan & Qiang Tu & Wenyun Tang, 2020. "Origin-Destination Demand Reconstruction Using Observed Travel Time under Congested Network," Networks and Spatial Economics, Springer, vol. 20(3), pages 733-755, September.
    9. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    10. Jinfei Wu & Xinghua Shan & Jingxia Sun & Shengyuan Weng & Shuo Zhao, 2023. "Daily Line Planning Optimization for High-Speed Railway Lines," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    11. Li, Guoyuan & Chen, Anthony, 2022. "Frequency-based path flow estimator for transit origin-destination trip matrices incorporating automatic passenger count and automatic fare collection data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    12. Juha-Matti Kuusinen & Janne Sorsa & Marja-Liisa Siikonen, 2015. "The Elevator Trip Origin-Destination Matrix Estimation Problem," Transportation Science, INFORMS, vol. 49(3), pages 559-576, August.
    13. Wenliang Zhou & Wenzhuang Fan & Xiaorong You & Lianbo Deng, 2019. "Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions," Sustainability, MDPI, vol. 11(18), pages 1-34, September.
    14. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    15. Cantelmo, Guido & Qurashi, Moeid & Prakash, A. Arun & Antoniou, Constantinos & Viti, Francesco, 2020. "Incorporating trip chaining within online demand estimation," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 171-187.
    16. Fu, Huiling & Nie, Lei & Meng, Lingyun & Sperry, Benjamin R. & He, Zhenhuan, 2015. "A hierarchical line planning approach for a large-scale high speed rail network: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 61-83.
    17. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    18. Yong Lin, 2023. "Models, Algorithms and Applications of DynasTIM Real-Time Traffic Simulation System," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    19. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián & Santos, Bruno F., 2022. "CHAIRS: A choice-based air transport simulator applied to airline competition and revenue management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 297-315.
    20. Wenliang Zhou & Yujun Huang & Naijie Chai & Bo Li & Xiang Li, 2022. "A Line Planning Optimization Model for High-Speed Railway Network Merging Newly-Built Railway Lines," Mathematics, MDPI, vol. 10(17), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1568941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.