IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v196y2009i2p719-736.html
   My bibliography  Save this article

Estimation of urban traffic conditions using an Automatic Vehicle Location (AVL) System

Author

Listed:
  • D'Acierno, Luca
  • Cartenì, Armando
  • Montella, Bruno

Abstract

The aim of this paper is to develop an Information Extension Model (IEM) which uses location data of bus fleets (AVL data) to estimate road traffic conditions and provide input for implementing control strategies. The IEM consists of three sub-models: the Link Traffic Condition Model (LTCM), the AVL Adaptation Model (AVLAM) and the Network Traffic Condition Model (NTCM). The first provides road traffic conditions as a function of mass-transit traffic conditions in the case of shared lanes, the second provides mass-transit traffic conditions as a function of AVL data, and the last provides road traffic conditions over the whole road network as a function of mass-transit traffic conditions. The IEM (and its sub-models) were developed and calibrated in the case of real dimension networks and some tests were performed on a trial network. Numerical results show the effectiveness of the proposed method since it allows a reduction in travel demand estimation errors.

Suggested Citation

  • D'Acierno, Luca & Cartenì, Armando & Montella, Bruno, 2009. "Estimation of urban traffic conditions using an Automatic Vehicle Location (AVL) System," European Journal of Operational Research, Elsevier, vol. 196(2), pages 719-736, July.
  • Handle: RePEc:eee:ejores:v:196:y:2009:i:2:p:719-736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00348-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Meng, Qiang, 2001. "Modeling user adoption of advanced traveler information systems: dynamic evolution and stationary equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 895-912, December.
    2. Cascetta, Ennio & Nguyen, Sang, 1988. "A unified framework for estimating or updating origin/destination matrices from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 437-455, December.
    3. Qing Shen, 1997. "Urban transportation in Shanghai, China: problems and planning implications," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 21(4), pages 589-606, December.
    4. Giulio Erberto Cantarella, 1997. "A General Fixed-Point Approach to Multimode Multi-User Equilibrium Assignment with Elastic Demand," Transportation Science, INFORMS, vol. 31(2), pages 107-128, May.
    5. Ennio Cascetta & Domenico Inaudi & Gérald Marquis, 1993. "Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts," Transportation Science, INFORMS, vol. 27(4), pages 363-373, November.
    6. Lo, Hong K. & Szeto, W. Y., 2002. "A methodology for sustainable traveler information services," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 113-130, February.
    7. T. Abrahamsson, 1998. "Estimation of Origin-Destination Matrices Using Traffic Counts- A Literature Survey," Working Papers ir98021, International Institute for Applied Systems Analysis.
    8. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    9. Horbury, Antoneta X., 1999. "Using non-real-time Automatic Vehicle Location data to improve bus services," Transportation Research Part B: Methodological, Elsevier, vol. 33(8), pages 559-579, November.
    10. Nozick, Linda K. & Borderas, Hector & Meyburg, Arnim H., 1998. "Evaluation of travel demand measures and programs: a data envelopment analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(5), pages 331-343, September.
    11. K. Ashok & M. E. Ben-Akiva, 2002. "Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows," Transportation Science, INFORMS, vol. 36(2), pages 184-198, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Celikoglu, Hilmi Berk, 2013. "Reconstructing freeway travel times with a simplified network flow model alternating the adopted fundamental diagram," European Journal of Operational Research, Elsevier, vol. 228(2), pages 457-466.
    2. Alessandro Crivellari & Euro Beinat, 2020. "Forecasting Spatially-Distributed Urban Traffic Volumes via Multi-Target LSTM-Based Neural Network Regressor," Mathematics, MDPI, vol. 8(12), pages 1-16, December.
    3. Ozer, Muammer, 2011. "Understanding the impacts of product knowledge and product type on the accuracy of intentions-based new product predictions," European Journal of Operational Research, Elsevier, vol. 211(2), pages 359-369, June.
    4. Shah, Nirav & Kumar, Subodha & Bastani, Farokh & Yen, I-Ling, 2012. "Optimization models for assessing the peak capacity utilization of intelligent transportation systems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 239-251.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shou-Ren & Peeta, Srinivas & Chu, Chun-Hsiao, 2009. "Identification of vehicle sensor locations for link-based network traffic applications," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 873-894, September.
    2. Simonelli, Fulvio & Marzano, Vittorio & Papola, Andrea & Vitiello, Iolanda, 2012. "A network sensor location procedure accounting for o–d matrix estimate variability," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1624-1638.
    3. Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
    4. Hsun-Jung Cho & Yow-Jen Jou & Chien-Lun Lan, 2009. "Time Dependent Origin-destination Estimation from Traffic Count without Prior Information," Networks and Spatial Economics, Springer, vol. 9(2), pages 145-170, June.
    5. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    6. Osorio, Carolina & Punzo, Vincenzo, 2019. "Efficient calibration of microscopic car-following models for large-scale stochastic network simulators," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 156-173.
    7. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    8. Watling, D.P. & Shepherd, S.P. & Koh, A., 2015. "Cordon toll competition in a network of two cities: Formulation and sensitivity to traveller route and demand responses," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 93-116.
    9. Wu, Jifeng & Chang, Gang-Len, 1996. "Estimation of time-varying origin-destination distributions with dynamic screenline flows," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 277-290, August.
    10. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    11. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    12. Yong Lin, 2023. "Models, Algorithms and Applications of DynasTIM Real-Time Traffic Simulation System," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    13. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    14. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    15. Cantelmo, Guido & Qurashi, Moeid & Prakash, A. Arun & Antoniou, Constantinos & Viti, Francesco, 2020. "Incorporating trip chaining within online demand estimation," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 171-187.
    16. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    17. Huang, Hai-Jun & Li, Zhi-Chun, 2007. "A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1464-1477, February.
    18. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    19. Wu, Jifeng, 1997. "A real-time origin-destination matrix updating algorithm for on-line applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 381-396, October.
    20. Bifulco, Gennaro N. & Cantarella, Giulio E. & Simonelli, Fulvio & Velonà, Pietro, 2016. "Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 73-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:196:y:2009:i:2:p:719-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.