IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i8-9p873-894.html
   My bibliography  Save this article

Identification of vehicle sensor locations for link-based network traffic applications

Author

Listed:
  • Hu, Shou-Ren
  • Peeta, Srinivas
  • Chu, Chun-Hsiao

Abstract

Information on link flows in a vehicular traffic network is critical for developing long-term planning and/or short-term operational management strategies. In the literature, most studies to develop such strategies typically assume the availability of measured link traffic information on all network links, either through manual survey or advanced traffic sensor technologies. In practical applications, the assumption of installed sensors on all links is generally unrealistic due to budgetary constraints. It motivates the need to estimate flows on all links of a traffic network based on the measurement of link flows on a subset of links with suitably equipped sensors. This study, addressed from a budgetary planning perspective, seeks to identify the smallest subset of links in a network on which to locate sensors that enables the accurate estimation of traffic flows on all links of the network under steady-state conditions. Here, steady-state implies that the path flows are static. A "basis link" method is proposed to determine the locations of vehicle sensors, by using the link-path incidence matrix to express the network structure and then identifying its "basis" in a matrix algebra context. The theoretical background and mathematical properties of the proposed method are elaborated. The approach is useful for deploying long-term planning and link-based applications in traffic networks.

Suggested Citation

  • Hu, Shou-Ren & Peeta, Srinivas & Chu, Chun-Hsiao, 2009. "Identification of vehicle sensor locations for link-based network traffic applications," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 873-894, September.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:8-9:p:873-894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00035-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maher, M. J., 1983. "Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 17(6), pages 435-447, December.
    2. Yang, Hai & Zhou, Jing, 1998. "Optimal traffic counting locations for origin-destination matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 109-126, February.
    3. Cascetta, Ennio & Nguyen, Sang, 1988. "A unified framework for estimating or updating origin/destination matrices from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 437-455, December.
    4. Chang, Gang-Len & Tao, Xianding, 1999. "An integrated model for estimating time-varying network origin-destination distributions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 381-399, June.
    5. K. Ashok & M. E. Ben-Akiva, 2002. "Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows," Transportation Science, INFORMS, vol. 36(2), pages 184-198, May.
    6. Wu, Jifeng & Chang, Gang-Len, 1996. "Estimation of time-varying origin-destination distributions with dynamic screenline flows," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 277-290, August.
    7. Ehlert, Anett & Bell, Michael G.H. & Grosso, Sergio, 2006. "The optimisation of traffic count locations in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 460-479, July.
    8. Ennio Cascetta & Domenico Inaudi & Gérald Marquis, 1993. "Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts," Transportation Science, INFORMS, vol. 27(4), pages 363-373, November.
    9. M. Gentili & P. Mirchandani, 2005. "Locating Active Sensors on Traffic Networks," Annals of Operations Research, Springer, vol. 136(1), pages 229-257, April.
    10. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xinyao & Ma, Shoufeng & Zhu, Ning & Lam, William H.K. & Fu, Hao, 2023. "Ensuring the robustness of link flow observation systems in sensor failure events," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    2. Enrique Castillo & Ana Rivas & Pilar Jiménez & José Menéndez, 2012. "Observability in traffic networks. Plate scanning added by counting information," Transportation, Springer, vol. 39(6), pages 1301-1333, November.
    3. Castillo, Enrique & Calviño, Aida & Lo, Hong K. & Menéndez, José María & Grande, Zacarías, 2014. "Non-planar hole-generated networks and link flow observability based on link counters," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 239-261.
    4. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Reliable sensor deployment for network traffic surveillance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 218-231, January.
    5. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    6. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    7. Shi An & Lina Ma & Jian Wang, 2020. "Optimization of Traffic Detector Layout Based on Complex Network Theory," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    8. Saif Eddin Jabari & Laura Wynter, 2016. "Sensor placement with time-to-detection guarantees," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 415-433, December.
    9. Wang, Ning & Zhang, Kunpeng & Zheng, Liang & Lee, Jaeyoung & Li, Shukai, 2023. "Network-wide traffic state reconstruction: An integrated generative adversarial network framework with structural deep network embedding," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    11. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    12. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    13. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    14. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    15. Ng, ManWo, 2013. "Partial link flow observability in the presence of initial sensors: Solution without path enumeration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 51(C), pages 62-66.
    16. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    17. Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2019. "Location of turning ratio and flow sensors for flow reconstruction in large traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 21-40.
    18. Zhu, Ning & Fu, Chenyi & Zhang, Xuanyi & Ma, Shoufeng, 2022. "A network sensor location problem for link flow observability and estimation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 428-448.
    19. He, Sheng-xue, 2013. "A graphical approach to identify sensor locations for link flow inference," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 65-76.
    20. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng, 2017. "A stochastic program approach for path reconstruction oriented sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 210-237.
    21. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
    22. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    23. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    24. Simonelli, Fulvio & Marzano, Vittorio & Papola, Andrea & Vitiello, Iolanda, 2012. "A network sensor location procedure accounting for o–d matrix estimate variability," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1624-1638.
    25. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simonelli, Fulvio & Marzano, Vittorio & Papola, Andrea & Vitiello, Iolanda, 2012. "A network sensor location procedure accounting for o–d matrix estimate variability," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1624-1638.
    2. Mínguez, R. & Sánchez-Cambronero, S. & Castillo, E. & Jiménez, P., 2010. "Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 282-298, February.
    3. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    4. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    5. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    6. Xuesong Zhou & George F. List, 2010. "An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications," Transportation Science, INFORMS, vol. 44(2), pages 254-273, May.
    7. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    8. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    9. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    10. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    11. Hsun-Jung Cho & Yow-Jen Jou & Chien-Lun Lan, 2009. "Time Dependent Origin-destination Estimation from Traffic Count without Prior Information," Networks and Spatial Economics, Springer, vol. 9(2), pages 145-170, June.
    12. Lin, Pei-Wei & Chang, Gang-Len, 2007. "A generalized model and solution algorithm for estimation of the dynamic freeway origin-destination matrix," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 554-572, June.
    13. He, Sheng-xue, 2013. "A graphical approach to identify sensor locations for link flow inference," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 65-76.
    14. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng, 2017. "A stochastic program approach for path reconstruction oriented sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 210-237.
    15. D'Acierno, Luca & Cartenì, Armando & Montella, Bruno, 2009. "Estimation of urban traffic conditions using an Automatic Vehicle Location (AVL) System," European Journal of Operational Research, Elsevier, vol. 196(2), pages 719-736, July.
    16. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    17. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    18. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    19. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    20. Castillo, Enrique & Calviño, Aida & Lo, Hong K. & Menéndez, José María & Grande, Zacarías, 2014. "Non-planar hole-generated networks and link flow observability based on link counters," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 239-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:8-9:p:873-894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.