IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v183y2024ics0965856424001289.html
   My bibliography  Save this article

Assessment of urban waterlogging-induced road traffic safety risk and identification of its driving factors: A case study of Beijing

Author

Listed:
  • Yang, Zihao
  • Wang, Hao
  • Chen, Bin

Abstract

Due to the increasing number of urban waterlogging events, systematic risk assessment and cause exploration are needed to ensure the safety of people's lives and property on roads. In this paper, the urban waterlogging-induced road traffic safety risk (UWRTSR) in the central part of Beijing was assessed and its driving factors were investigated. We obtained the simulation data of road inundation for five rainstorm return periods (5-year, 10-year, 20-year, 50-year and 100-year) through the InfoWorks ICM hydrodynamic model. Then, the safety risk levels of pedestrians and vehicles are evaluated with safety criteria formulas and standards, and the driving factors are identified by the Geodetector model. The results show that the proportion of the total length of road sections at different risk levels for pedestrians, stationary vehicles and moving vehicles increased with increasing rainstorm return period, while for the same road section, the risk level for pedestrians or vehicles may increase due to a higher intensity rainstorm event. The results of subsequent driving factor analysis show that slope, terrain ruggedness index (TRI) and LS factor were the top three single-factor explanatory powers, with the joint effect of slope and rain pipe capacity (RPC) possessing the largest explanatory power. It is found that a high level UWRTSR is to be generated in road sections with low drain network specifications and high slope gradients. Our research may help smooth emergency resource management, road network construction and reconstruction to mitigate the waterlogging risk.

Suggested Citation

  • Yang, Zihao & Wang, Hao & Chen, Bin, 2024. "Assessment of urban waterlogging-induced road traffic safety risk and identification of its driving factors: A case study of Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:transa:v:183:y:2024:i:c:s0965856424001289
    DOI: 10.1016/j.tra.2024.104080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424001289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junqiang Xia & Roger Falconer & Xuanwei Xiao & Yejiang Wang, 2014. "Criterion of vehicle stability in floodwaters based on theoretical and experimental studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1619-1630, January.
    2. Zhang, Ning & Alipour, Alice, 2022. "Flood risk assessment and application of risk curves for design of mitigation strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    3. Eduardo Martínez-Gomariz & Manuel Gómez & Beniamino Russo, 2016. "Experimental study of the stability of pedestrians exposed to urban pluvial flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1259-1278, June.
    4. Omid Rahmati & Zahra Kalantari & Mahmood Samadi & Evelyn Uuemaa & Davoud Davoudi Moghaddam & Omid Asadi Nalivan & Georgia Destouni & Dieu Tien Bui, 2019. "GIS-Based Site Selection for Check Dams in Watersheds: Considering Geomorphometric and Topo-Hydrological Factors," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    5. Shubham M. Jibhakate & P. V. Timbadiya & P. L. Patel, 2023. "Flood hazard assessment for the coastal urban floodplain using 1D/2D coupled hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1557-1590, March.
    6. Liu, Keling & Chen, Bin & Wang, Saige & Wang, Hao, 2023. "An urban waterlogging footprint accounting based on emergy: A case study of Beijing," Applied Energy, Elsevier, vol. 348(C).
    7. Junqiang Xia & Fang Teo & Binliang Lin & Roger Falconer, 2011. "Formula of incipient velocity for flooded vehicles," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 1-14, July.
    8. B. Russo & M. Gómez & F. Macchione, 2013. "Pedestrian hazard criteria for flooded urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 251-265, October.
    9. Xiaoliang Xie & Linglu Huang & Stephen M. Marson & Guo Wei, 2023. "Emergency response process for sudden rainstorm and flooding: scenario deduction and Bayesian network analysis using evidence theory and knowledge meta-theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3307-3329, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beniamino Russo & Manuel Gómez Valentín & Jackson Tellez-Álvarez, 2021. "The Relevance of Grated Inlets within Surface Drainage Systems in the Field of Urban Flood Resilience. A Review of Several Experimental and Numerical Simulation Approaches," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    2. María Guerrero-Hidalga & Eduardo Martínez-Gomariz & Barry Evans & James Webber & Montserrat Termes-Rifé & Beniamino Russo & Luca Locatelli, 2020. "Methodology to Prioritize Climate Adaptation Measures in Urban Areas. Barcelona and Bristol Case Studies," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    3. Eduardo Martínez-Gomariz & Carlos Barbero & Martí Sanchez-Juny & Edwar Forero-Ortiz & Marcos Sanz-Ramos, 2023. "Dams or ponds classification based on a new criterion to assess potential flood damage to roads in case of failure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 625-653, May.
    4. Beniamino Russo & Marc Velasco & Luca Locatelli & David Sunyer & Daniel Yubero & Robert Monjo & Eduardo Martínez-Gomariz & Edwar Forero-Ortiz & Daniel Sánchez-Muñoz & Barry Evans & Andoni Gonzalez Góm, 2020. "Assessment of Urban Flood Resilience in Barcelona for Current and Future Scenarios. The RESCCUE Project," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    5. Nicolás Federico Guillén & Antoine Patalano & Carlos Marcelo García & Juan Carlos Bertoni, 2017. "Use of LSPIV in assessing urban flash flood vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 383-394, May.
    6. John Stevens & Rob Henderson & James Webber & Barry Evans & Albert Chen & Slobodan Djordjević & Daniel Sánchez-Muñoz & José Domínguez-García, 2020. "Interlinking Bristol Based Models to Build Resilience to Climate Change," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    7. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    8. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    9. Alfredo Fernández-Enríquez & María Luisa Pérez-Cayeiro & Giorgio Anfuso, 2022. "GIS Modeling to Climate Change Adaptation by Reducing Evaporation in Water Reservoirs: Smart Location Technique of Minimal Evaporation Reservoirs (GIS-MER)," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    10. Edwar Forero-Ortiz & Eduardo Martínez-Gomariz & Manuel Cañas Porcuna & Luca Locatelli & Beniamino Russo, 2020. "Flood Risk Assessment in an Underground Railway System under the Impact of Climate Change—A Case Study of the Barcelona Metro," Sustainability, MDPI, vol. 12(13), pages 1-26, June.
    11. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    12. Helena M. Ramos & Mohsen Besharat, 2021. "Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    13. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    14. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Syed Muzzamil Hussain Shah & Eduardo Matínez-Gomariz & Khamaruzaman Wan Yusof, 2022. "Full-scale experimental investigations on the response of a flooded passenger vehicle under subcritical conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 325-348, January.
    15. Melisa Acosta-Coll & Francisco Ballester-Merelo & Marcos Martínez-Peiró, 2018. "Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1237-1265, June.
    16. Weiping Wang & Saini Yang & Jianxi Gao & Fuyu Hu & Wanyi Zhao & H. Eugene Stanley, 2020. "An Integrated Approach for Assessing the Impact of Large‐Scale Future Floods on a Highway Transport System," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1780-1794, September.
    17. Marc Velasco & Beniamino Russo & Robert Monjo & César Paradinas & Slobodan Djordjević & Barry Evans & Eduardo Martínez-Gomariz & Maria Guerrero-Hidalga & Maria Adriana Cardoso & Rita Salgado Brito & D, 2020. "Increased Urban Resilience to Climate Change—Key Outputs from the RESCCUE Project," Sustainability, MDPI, vol. 12(23), pages 1-25, November.
    18. Ramachandramoorthi Shanmugapriya & Perichetla Kandaswamy Hemalatha & Lenka Cepova & Jiri Struz, 2023. "A Study of Independency on Fuzzy Resolving Sets of Labelling Graphs," Mathematics, MDPI, vol. 11(16), pages 1-9, August.
    19. João Barreiro & Filipa Ferreira & Rita Salgado Brito & José Saldanha Matos, 2024. "Development of Resilience Framework and Respective Tool for Urban Stormwater Services," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    20. Francesco Macchione & Gianluca De Lorenzo & Pierfranco Costabile & Babak Razdar, 2016. "The Power Function for Representing the Reservoir Rating Curve: Morphological Meaning and Suitability for Dam Breach Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4861-4881, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:183:y:2024:i:c:s0965856424001289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.