IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923008917.html
   My bibliography  Save this article

An urban waterlogging footprint accounting based on emergy: A case study of Beijing

Author

Listed:
  • Liu, Keling
  • Chen, Bin
  • Wang, Saige
  • Wang, Hao

Abstract

The waterlogging disaster has become a major threat to the resilient development of cities, which needs a unified and systematic accounting framework to estimate potential waterlogging effects in terms of forming disaster prevention strategies. In this paper, we developed an emergy-based waterlogging footprint accounting framework applying depth-damage functions, input–output (IO) analysis and ecological footprint, considering both economic and environmental factors. Taking the old town Beijing as a case study, we simulated the urban waterlogging distribution with a hydrodynamic model (InfoWorks ICM) over different return periods (1, 2, 3, 5, 10, 20, and 50 years) at high resolution. This study first considered the economic impact caused by urban waterlogging to evaluate the direct economic loss and indirect economic loss by using the depth-damage function and IO model, respectively. The environmental loss was assessed with an ecological footprint and was unified by emergy with economic loss. Then, four emergy-based indicators were established to quantify the specific impacts of waterlogging on urban resilience. The results show that the waterlogging footprints grew constantly by 284.57% from 1 year to 50 years. The waterlogging footprints driven by environmental loss, which were overlooked, accounted for 13.02% of the total. The waterlogging footprint density and waterlogging resilience index showed high spatial heterogeneity, indicating that the sensitivity of subdistricts to waterlogging varies greatly. Our study provides a useful energy-based tool for assessing urban waterlogging losses and supports decision-making for waterlogging disaster mitigation and risk zoning management.

Suggested Citation

  • Liu, Keling & Chen, Bin & Wang, Saige & Wang, Hao, 2023. "An urban waterlogging footprint accounting based on emergy: A case study of Beijing," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008917
    DOI: 10.1016/j.apenergy.2023.121527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923008917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Shu-Li & Lee, Chun-Lin & Chen, Chia-Wen, 2006. "Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 48(2), pages 166-196.
    2. Guizhi Wang & Rongrong Chen & Jibo Chen, 2017. "Direct and indirect economic loss assessment of typhoon disasters based on EC and IO joint model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1751-1764, July.
    3. Yii, Kwang-Jing & Tan, Chai-Thing & Ho, Wing-Ken & Kwan, Xiao-Hui & Nerissa, Feng-Ting Shim & Tan, Yan-Yi & Wong, Kar-Horn, 2022. "Land availability and housing price in China: Empirical evidence from nonlinear autoregressive distributed lag (NARDL)," Land Use Policy, Elsevier, vol. 113(C).
    4. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    5. Jan Huizinga & Hans de Moel & Wojciech Szewczyk, 2017. "Global flood depth-damage functions: Methodology and the database with guidelines," JRC Research Reports JRC105688, Joint Research Centre.
    6. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    7. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    8. David Mendoza‐Tinoco & Yixin Hu & Zhao Zeng & Konstantinos J. Chalvatzis & Ning Zhang & Albert E. Steenge & Dabo Guan, 2020. "Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1612-1631, August.
    9. Fang, Delin & Chen, Shaoqing & Chen, Bin, 2015. "Emergy analysis for the upper Mekong river intercepted by the Manwan hydropower construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 899-909.
    10. Zhong, Weiqiong & An, Haizhong & Fang, Wei & Gao, Xiangyun & Dong, Di, 2016. "Features and evolution of international fossil fuel trade network based on value of emergy," Applied Energy, Elsevier, vol. 165(C), pages 868-877.
    11. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zihao & Wang, Hao & Chen, Bin, 2024. "Assessment of urban waterlogging-induced road traffic safety risk and identification of its driving factors: A case study of Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Schotten & Daniel Bachmann, 2023. "Integrating Critical Infrastructure Networks into Flood Risk Management," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    2. Ren, Siyue & Feng, Xiao & Yang, Minbo, 2023. "Solution of issues in emergy theory caused by pathway tracking: Taking China's power generation system as an example," Energy, Elsevier, vol. 262(PB).
    3. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    4. Tan, Ling Min & Arbabi, Hadi & Brockway, Paul E. & Densley Tingley, Danielle & Mayfield, Martin, 2019. "An ecological-thermodynamic approach to urban metabolism: Measuring resource utilization with open system network effectiveness analysis," Applied Energy, Elsevier, vol. 254(C).
    5. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
    6. Wang, Wenya & Li, Zhenfu & Cheng, Xin, 2019. "Evolution of the global coal trade network: A complex network analysis," Resources Policy, Elsevier, vol. 62(C), pages 496-506.
    7. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
    8. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    9. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    10. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    12. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    13. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    14. Kitamura, Toshihiko & Managi, Shunsuke, 2017. "Driving force and resistance: Network feature in oil trade," Applied Energy, Elsevier, vol. 208(C), pages 361-375.
    15. Jiang, Meihui & An, Haizhong & Guan, Qing & Sun, Xiaoqi, 2018. "Global embodied mineral flow between industrial sectors: A network perspective," Resources Policy, Elsevier, vol. 58(C), pages 192-201.
    16. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    17. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    18. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    19. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    20. Cemal Zehir & Mustafa Yücel & Alex Borodin & Sevgi Yücel & Songül Zehir, 2023. "Strategies in Energy Supply: A Social Network Analysis on the Energy Trade of the European Union," Energies, MDPI, vol. 16(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.