IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i3d10.1007_s11069-016-2501-z.html
   My bibliography  Save this article

Flood hazard assessment for extreme flood events

Author

Listed:
  • Davor Kvočka

    (Cardiff University)

  • Roger A. Falconer

    (Cardiff University)

  • Michaela Bray

    (Cardiff University)

Abstract

Climate change is expected to result in an increase in the frequency and intensity of extreme weather events. In turn, this will result in more frequent occurrences of extreme flood events, such as flash flooding and large-scale river flooding. This being the case, there is a need for more accurate flood risk assessment schemes, particularly in areas prone to extreme flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by extreme flooding. Two flood hazard assessment criteria were tested, namely: a widely used, empirically derived method, and recently introduced, physically based and experimentally calibrated method. The two selected flood hazard assessment methods were: (1) validated against experimental data, and (2) used to assess flood hazard indices for two different extreme flood events, namely: the 2010 Kostanjevica na Krki extreme river flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas prone to extreme flooding, the flood hazard indices should be based on using the formulae derived for a mechanics-based analysis, as these formulations consider all of the physical forces acting on a human body in floodwaters, take into account the rapid changes in the flow regime, which often occur for extreme flood events, and enable a rapid assessment of the degree of flood hazard risk in a short time period, a feature particularly important when assessing flood hazard indices for high Froude numbers flows.

Suggested Citation

  • Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2501-z
    DOI: 10.1007/s11069-016-2501-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2501-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2501-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    2. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    3. B. Russo & M. Gómez & F. Macchione, 2013. "Pedestrian hazard criteria for flooded urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 251-265, October.
    4. Davor Kvočka & Roger Falconer & Michaela Bray, 2015. "Appropriate model use for predicting elevations and inundation extent for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1791-1808, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabricio Polifke Silva & Otto Corrêa Rotunno Filho & Maria Gertrudes Alvarez Justi da Silva & Rafael João Sampaio & Gisele Dornelles Pires & Afonso Augusto Magalhães Araújo, 2020. "Identification of rainfall and atmospheric patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3745-3764, September.
    2. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Davor Kvočka & Reza Ahmadian & Roger A Falconer, 2018. "Predicting Flood Hazard Indices in Torrential or Flashy River Basins and Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2335-2352, May.
    4. Bingyao Li & Jingming Hou & Yongyong Ma & Ganggang Bai & Tian Wang & Guoxin Xu & Binzhong Wu & Yongbao Jiao, 2022. "A coupled high-resolution hydrodynamic and cellular automata-based evacuation route planning model for pedestrians in flooding scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 607-628, January.
    5. Ryota Nakamura & Martin Mäll & Tomoya Shibayama, 2019. "Street-scale storm surge load impact assessment using fine-resolution numerical modelling: a case study from Nemuro, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 391-422, October.
    6. Na Li & Shenglian Guo & Feng Xiong & Jun Wang & Yuzuo Xie, 2022. "Comparative Study of Flood Coincidence Risk Estimation Methods in the Mainstream and its Tributaries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 683-698, January.
    7. Hye-Kyoung Lee & Young-Hoon Bae & Jong-Yeong Son & Won-Hwa Hong, 2020. "Analysis of Flood-Vulnerable Areas for Disaster Planning Considering Demographic Changes in South Korea," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    8. Changjun Liu & Liang Guo & Lei Ye & Shunfu Zhang & Yanzeng Zhao & Tianyu Song, 2018. "A review of advances in China’s flash flood early-warning system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 619-634, June.
    9. Ismallianto Isia & Tony Hadibarata & Muhammad Noor Hazwan Jusoh & Rajib Kumar Bhattacharjya & Noor Fifinatasha Shahedan & Norma Latif Fitriyani & Muhammad Syafrudin, 2023. "Identifying Factors to Develop and Validate Social Vulnerability to Floods in Malaysia: A Systematic Review Study," Sustainability, MDPI, vol. 15(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael A. Strom & Gregory B. Pasternack & Scott G. Burman & Helen E. Dahlke & Samuel Sandoval-Solis, 2017. "Hydraulic hazard exposure of humans swept away in a whitewater river," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 473-502, August.
    2. Peng Gao & Wei Gao & Nan Ke, 2021. "Assessing the impact of flood inundation dynamics on an urban environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1047-1072, October.
    3. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    4. Lilia Flores Mateos & Michael Hartnett, 2020. "Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    5. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    6. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    7. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    8. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    9. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    10. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    11. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    12. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    13. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    14. Abedifar, Pejman & Kashizadeh, Seyed Javad & Ongena, Steven, 2024. "Flood, farms and credit: The role of branch banking in the era of climate change," Journal of Corporate Finance, Elsevier, vol. 85(C).
    15. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    16. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    17. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    18. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    19. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    20. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2501-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.