IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i2d10.1007_s11069-016-2242-z.html
   My bibliography  Save this article

Experimental study of the stability of pedestrians exposed to urban pluvial flooding

Author

Listed:
  • Eduardo Martínez-Gomariz

    (Technical University of Catalonia)

  • Manuel Gómez

    (Technical University of Catalonia)

  • Beniamino Russo

    (University of Zaragoza)

Abstract

Populations in urban environments are extremely mobile throughout the day and in various weather conditions; accounting for this pedestrian mobility and security becomes high importance. Research into the security and stability of the pedestrian environment under exposure to critical water flows provides an essential knowledge base with which the associated hazard unto them can be critically evaluated. This research seeks to analyse degrees of hazard in relation to persons exposed to high-volume rain events in urban areas. Several human trials of critical urban flows were conducted in order to determine the stability limits of pedestrians, crossing through a water flow in a real-scale physic model. Additionally, the critical first step from a dry footpath into fast-flowing water is considered and an assessment of the tested subjects’ emotional responses when entering and crossing flooded roadways was carried out. Results from this study are compared with various proposed human stability criteria as well as alternatives proposed in other written works. The presented study offers a stability threshold focused on shallow depths and high-velocity conditions, the most common urban flooding conditions.

Suggested Citation

  • Eduardo Martínez-Gomariz & Manuel Gómez & Beniamino Russo, 2016. "Experimental study of the stability of pedestrians exposed to urban pluvial flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1259-1278, June.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2242-z
    DOI: 10.1007/s11069-016-2242-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2242-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2242-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolás Federico Guillén & Antoine Patalano & Carlos Marcelo García & Juan Carlos Bertoni, 2017. "Use of LSPIV in assessing urban flash flood vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 383-394, May.
    2. Edwar Forero-Ortiz & Eduardo Martínez-Gomariz & Manuel Cañas Porcuna & Luca Locatelli & Beniamino Russo, 2020. "Flood Risk Assessment in an Underground Railway System under the Impact of Climate Change—A Case Study of the Barcelona Metro," Sustainability, MDPI, vol. 12(13), pages 1-26, June.
    3. Beniamino Russo & Manuel Gómez Valentín & Jackson Tellez-Álvarez, 2021. "The Relevance of Grated Inlets within Surface Drainage Systems in the Field of Urban Flood Resilience. A Review of Several Experimental and Numerical Simulation Approaches," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    4. John Stevens & Rob Henderson & James Webber & Barry Evans & Albert Chen & Slobodan Djordjević & Daniel Sánchez-Muñoz & José Domínguez-García, 2020. "Interlinking Bristol Based Models to Build Resilience to Climate Change," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    5. Beniamino Russo & Marc Velasco & Luca Locatelli & David Sunyer & Daniel Yubero & Robert Monjo & Eduardo Martínez-Gomariz & Edwar Forero-Ortiz & Daniel Sánchez-Muñoz & Barry Evans & Andoni Gonzalez Góm, 2020. "Assessment of Urban Flood Resilience in Barcelona for Current and Future Scenarios. The RESCCUE Project," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    6. Marc Velasco & Beniamino Russo & Robert Monjo & César Paradinas & Slobodan Djordjević & Barry Evans & Eduardo Martínez-Gomariz & Maria Guerrero-Hidalga & Maria Adriana Cardoso & Rita Salgado Brito & D, 2020. "Increased Urban Resilience to Climate Change—Key Outputs from the RESCCUE Project," Sustainability, MDPI, vol. 12(23), pages 1-25, November.
    7. Melisa Acosta-Coll & Francisco Ballester-Merelo & Marcos Martínez-Peiró, 2018. "Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1237-1265, June.
    8. Yang, Zihao & Wang, Hao & Chen, Bin, 2024. "Assessment of urban waterlogging-induced road traffic safety risk and identification of its driving factors: A case study of Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    9. María Guerrero-Hidalga & Eduardo Martínez-Gomariz & Barry Evans & James Webber & Montserrat Termes-Rifé & Beniamino Russo & Luca Locatelli, 2020. "Methodology to Prioritize Climate Adaptation Measures in Urban Areas. Barcelona and Bristol Case Studies," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    10. Eduardo Martínez-Gomariz & Carlos Barbero & Martí Sanchez-Juny & Edwar Forero-Ortiz & Marcos Sanz-Ramos, 2023. "Dams or ponds classification based on a new criterion to assess potential flood damage to roads in case of failure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 625-653, May.
    11. João Barreiro & Filipa Ferreira & Rita Salgado Brito & José Saldanha Matos, 2024. "Development of Resilience Framework and Respective Tool for Urban Stormwater Services," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    12. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2242-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.