IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v176y2023ics0965856423002549.html
   My bibliography  Save this article

A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset

Author

Listed:
  • Łukawska, Mirosława
  • Paulsen, Mads
  • Rasmussen, Thomas Kjær
  • Jensen, Anders Fjendbo
  • Nielsen, Otto Anker

Abstract

One of the aspects that policymakers should consider when promoting cycling is the route choice behaviour of current cyclists. This study develops a behaviourally realistic route choice model for different types of everyday cyclists and cycling trips. The analysis is based on a large-scale crowdsourced dataset of GPS trajectories including 134,169 trips from 6,523 cyclists. The model is estimated as a joint path-size logit model and accounts for a wide range of bicycle network attributes, such as bicycle infrastructure type, land use, surface type or cycle superhighways. The findings of the model reveal, for example, that infrequent cyclists feel less safe on large roads, but this effect can be accommodated with protected bicycle tracks. Interaction with other motorised and non-motorised transport modes is found to be a deterring factor for cyclists and they prefer scenic water and green areas over high-rise urban environments, especially on long trips. The model performs very well on a hold-out sample, also when considering the similarity between the observed and predicted route, not only their binary consistency. Finally, we formulate several policy measures relevant to promote cycling. Building long, continuous stretches of dedicated, protected bicycle infrastructure outside of the high-rise urban environments has the greatest potential to make cycling attractive.

Suggested Citation

  • Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:transa:v:176:y:2023:i:c:s0965856423002549
    DOI: 10.1016/j.tra.2023.103834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423002549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frejinger, E. & Bierlaire, M., 2007. "Capturing correlation with subnetworks in route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 363-378, March.
    2. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    3. Zhao, Yuanying & Pawlak, Jacek & Sivakumar, Aruna, 2022. "Theory for socio-demographic enrichment performance using the inverse discrete choice modelling approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 101-134.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    5. Park, Yujin & Akar, Gulsah, 2019. "Why do bicyclists take detours? A multilevel regression model using smartphone GPS data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 191-200.
    6. Assunçao-Denis, Marie-Ève & Tomalty, Ray, 2019. "Increasing cycling for transportation in Canadian communities: Understanding what works," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 288-304.
    7. Lucas Magnana & Herve Rivano & Nicolas Chiabaut, 2022. "Implicit GPS-based bicycle route choice model using clustering methods and a LSTM network," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-20, March.
    8. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    9. Parady, Giancarlos & Ory, David & Walker, Joan, 2021. "The overreliance on statistical goodness-of-fit and under-reliance on model validation in discrete choice models: A review of validation practices in the transportation academic literature," Journal of choice modelling, Elsevier, vol. 38(C).
    10. Trisalyn Nelson & Colin Ferster & Karen Laberee & Daniel Fuller & Meghan Winters, 2021. "Crowdsourced data for bicycling research and practice," Transport Reviews, Taylor & Francis Journals, vol. 41(1), pages 97-114, January.
    11. Aldred, Rachel & Watson, Tom & Lovelace, Robin & Woodcock, James, 2019. "Barriers to investing in cycling: Stakeholder views from England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 149-159.
    12. Bagloee, Saeed Asadi & Sarvi, Majid & Wallace, Mark, 2016. "Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 102-121.
    13. Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).
    14. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    15. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    16. Kyuhyun Lee & Ipek Nese Sener, 2021. "Strava Metro data for bicycle monitoring: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 41(1), pages 27-47, January.
    17. Rich, Jeppe & Myhrmann, Marcus Skyum & Mabit, Stefan Eriksen, 2023. "Our children cycle less - A Danish pseudo-panel analysis," Journal of Transport Geography, Elsevier, vol. 106(C).
    18. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    19. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    20. Ray Pritchard, 2018. "Revealed Preference Methods for Studying Bicycle Route Choice—A Systematic Review," IJERPH, MDPI, vol. 15(3), pages 1-30, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Liao & Ma, Shoufeng & Li, Changlin & Yang, Yuance & Wei, Wei & Cui, Runbang, 2024. "A spatial–temporal graph-based AI model for truck loan default prediction using large-scale GPS trajectory data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    3. Hsueh, Chieh & Lin, Jen-Jia, 2023. "Influential factors of the route choices of scooter riders: A GPS-based data study," Journal of Transport Geography, Elsevier, vol. 113(C).
    4. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    5. Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
    6. Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    7. Mohammad Anwar Alattar & Caitlin Cottrill & Mark Beecroft, 2021. "Sources and Applications of Emerging Active Travel Data: A Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    8. Van Veghel, Daniel & Scott, Darren M., 2024. "Investigating the impacts of bike lanes on bike share ridership: A holistic approach and demonstration," Journal of Transport Geography, Elsevier, vol. 115(C).
    9. Melo, Lucas Eduardo Araújo de & Isler, Cassiano Augusto, 2023. "Integrating link count data for enhanced estimation of deterrence functions: A case study of short-term bicycle network interventions," Journal of Transport Geography, Elsevier, vol. 112(C).
    10. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    11. van der Waerden, Peter & van der Waerden, Jaap & Gebhard, Sarah, 2024. "Intersection based innovations and cyclists’ route choice decisions in urban areas," Transport Policy, Elsevier, vol. 146(C), pages 205-214.
    12. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    13. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    14. Chung, Jaehoon & Yao, Enjian & Pan, Long & Ko, Joonho, 2024. "Understanding the route choice preferences of private and dock-based public bike users using GPS data in Seoul, South Korea," Journal of Transport Geography, Elsevier, vol. 116(C).
    15. Zhang, Lihong & Liu, Yan & Lieske, Scott N. & Corcoran, Jonathan, 2022. "Using modality styles to understand cycling dissonance: The role of the street-scale environment in commuters' travel mode choice," Journal of Transport Geography, Elsevier, vol. 103(C).
    16. Hess, Stephane & Quddus, Mohammed & Rieser-Schüssler, Nadine & Daly, Andrew, 2015. "Developing advanced route choice models for heavy goods vehicles using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 29-44.
    17. Cubells, Jerònia & Miralles-Guasch, Carme & Marquet, Oriol, 2023. "E-scooter and bike-share route choice and detours: Modelling the influence of built environment and sociodemographic factors," Journal of Transport Geography, Elsevier, vol. 111(C).
    18. Carlo Prato & Shlomo Bekhor & Cristina Pronello, 2012. "Latent variables and route choice behavior," Transportation, Springer, vol. 39(2), pages 299-319, March.
    19. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    20. Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:176:y:2023:i:c:s0965856423002549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.