IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v146y2024icp205-214.html
   My bibliography  Save this article

Intersection based innovations and cyclists’ route choice decisions in urban areas

Author

Listed:
  • van der Waerden, Peter
  • van der Waerden, Jaap
  • Gebhard, Sarah

Abstract

This paper presents the background, setup, and results of a stated choice experiment investigating the influence of three different intersection based innovations on cyclists' route choice decisions. Next to commonly used route attributes, the following three intersection based innovations were investigated: ‘Flo’, a bicycle speed advice tool; ‘Schwung’, a bicycle - traffic light communication tool; and ‘BikeScout’, an intersection flashing system. The generated stated choice experiment was included in an online questionnaire that was filled out by 608 respondents who evaluated in total 3648 choice tasks. The evaluations were analyzed using a Multinomial Mixed Logit model. The model estimation results show that the commonly used route attributes (travel time, type of bicycle path facility, pavement quality level, motorized traffic speed, bicycle crowdedness, and number of traffic light intersections) have the highest influence on cyclists' route choice decisions. The impact of intersection based innovations on cyclists' route choice decisions is limited.

Suggested Citation

  • van der Waerden, Peter & van der Waerden, Jaap & Gebhard, Sarah, 2024. "Intersection based innovations and cyclists’ route choice decisions in urban areas," Transport Policy, Elsevier, vol. 146(C), pages 205-214.
  • Handle: RePEc:eee:trapol:v:146:y:2024:i:c:p:205-214
    DOI: 10.1016/j.tranpol.2023.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23003281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    2. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    3. Changxi Ma & Dong Yang & Jibiao Zhou & Zhongxiang Feng & Quan Yuan, 2019. "Risk Riding Behaviors of Urban E-Bikes: A Literature Review," IJERPH, MDPI, vol. 16(13), pages 1-18, June.
    4. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    7. Ipek Sener & Naveen Eluru & Chandra Bhat, 2009. "An analysis of bicycle route choice preferences in Texas, US," Transportation, Springer, vol. 36(5), pages 511-539, September.
    8. Bialkova, Svetlana & Ettema, Dick & Dijst, Martin, 2022. "How do design aspects influence the attractiveness of cycling streetscapes: Results of virtual reality experiments in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 315-331.
    9. Gamble, Julie & Snizek, Bernhard & Nielsen, Thomas Sick, 2017. "From people to cycling indicators: Documenting and understanding the urban context of cyclists' experiences in Quito, Ecuador," Journal of Transport Geography, Elsevier, vol. 60(C), pages 167-177.
    10. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    11. Snizek, Bernhard & Sick Nielsen, Thomas Alexander & Skov-Petersen, Hans, 2013. "Mapping bicyclists’ experiences in Copenhagen," Journal of Transport Geography, Elsevier, vol. 30(C), pages 227-233.
    12. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    2. Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    3. Bandhan Bandhu Majumdar & Sudeshna Mitra, 2019. "A study on route choice preferences for commuter and non-commuter bicyclists: a case study of Kharagpur and Asansol, India," Transportation, Springer, vol. 46(5), pages 1839-1865, October.
    4. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    5. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    6. Majumdar, Bandhan Bandhu & Mitra, Sudeshna, 2018. "Analysis of bicycle route-related improvement strategies for two Indian cities using a stated preference survey," Transport Policy, Elsevier, vol. 63(C), pages 176-188.
    7. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    8. Uijtdewilligen, Teun & Baran Ulak, Mehmet & Jan Wijlhuizen, Gert & Geurs, Karst T., 2024. "Effects of crowding on route preferences and perceived safety of urban cyclists in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    9. Hess, Stephane & Quddus, Mohammed & Rieser-Schüssler, Nadine & Daly, Andrew, 2015. "Developing advanced route choice models for heavy goods vehicles using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 29-44.
    10. Mikołaj Czajkowski & Marek Giergiczny & Jakub Kronenberg & Jeffrey Englin, 2019. "The Individual Travel Cost Method with Consumer-Specific Values of Travel Time Savings," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 961-984, November.
    11. Carlo Prato & Shlomo Bekhor & Cristina Pronello, 2012. "Latent variables and route choice behavior," Transportation, Springer, vol. 39(2), pages 299-319, March.
    12. Park, Yujin & Akar, Gulsah, 2019. "Why do bicyclists take detours? A multilevel regression model using smartphone GPS data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 191-200.
    13. Gehrke, Steven R. & Wang, Liming, 2020. "Operationalizing the neighborhood effects of the built environment on travel behavior," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Peer, Stefanie & Knockaert, Jasper & Verhoef, Erik T., 2016. "Train commuters’ scheduling preferences: Evidence from a large-scale peak avoidance experiment," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 314-333.
    15. David Kohlrautz & Tobias Kuhnimhof, 2023. "E-Bike Charging Infrastructure in the Workplace—Should Employers Provide It?," Sustainability, MDPI, vol. 15(13), pages 1-11, July.
    16. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    17. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    18. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    19. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    20. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:146:y:2024:i:c:p:205-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.