IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v87y2016icp102-121.html
   My bibliography  Save this article

Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area

Author

Listed:
  • Bagloee, Saeed Asadi
  • Sarvi, Majid
  • Wallace, Mark

Abstract

The main obstacles to boosting the bicycle as a mode of transport are safety concerns due to interactions with motorized traffic. One option is to separate cyclists from motorists through exclusive bicycle priority lanes. This practice is easily implemented in uncongested traffic. Enforcing bicycle lanes on congested roads may degenerate the network, making the idea very hard to sell both to the public and the traffic authorities. Inspired by Braess Paradox, we take an unorthodox approach to seeking latent misutilized capacity in the congested networks to be dedicated to exclusive bicycle lanes. The aim of this study is to tailor an efficient and practical method to large size urban networks. Hence, this paper appeals to policy makers in their quest to scientifically convince stakeholder that bicycle is not a secondary mode, rather, it can be greatly accommodated along with other modes even in the heart of the congested cities. In conjunction with the bicycle lane priority, other policy measures such as shared bicycle scheme, electric-bike, integration of public transport and bicycle are also discussed in this article. As for the mathematical methodology, we articulated it as a discrete bilevel mathematical programing. In order to handle the real networks, we developed a phased methodology based on Branch-and-Bound (as a solution algorithm), structured in a less intensive RAM manner. The methodology was tested on real size network of city of Winnipeg, Canada, for which the total of 30 road segments – equivalent to 2.77km bicycle lanes – in the CBD were found.

Suggested Citation

  • Bagloee, Saeed Asadi & Sarvi, Majid & Wallace, Mark, 2016. "Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 102-121.
  • Handle: RePEc:eee:transa:v:87:y:2016:i:c:p:102-121
    DOI: 10.1016/j.tra.2016.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416000495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    2. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    3. Nagurney, Anna & Dong, June, 2002. "A multiclass, multicriteria traffic network equilibrium model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 445-469, June.
    4. Su, Jason G. & Winters, Meghan & Nunes, Melissa & Brauer, Michael, 2010. "Designing a route planner to facilitate and promote cycling in Metro Vancouver, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 495-505, August.
    5. Dietrich Braess & Anna Nagurney & Tina Wakolbinger, 2005. "On a Paradox of Traffic Planning," Transportation Science, INFORMS, vol. 39(4), pages 446-450, November.
    6. Habib, Khandker Nurul & Mann, Jenessa & Mahmoud, Mohamed & Weiss, Adam, 2014. "Synopsis of bicycle demand in the City of Toronto: Investigating the effects of perception, consciousness and comfortability on the purpose of biking and bike ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 67-80.
    7. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    8. Wang, Dianhai & Feng, Tianjun & Liang, Chunyan, 2008. "Research on bicycle conversion factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1129-1139, October.
    9. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    10. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    11. Florian, Michael & Morosan, Calin D., 2014. "On uniqueness and proportionality in multi-class equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 173-185.
    12. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    13. Duan Li & Xiaoling Sun, 2006. "Nonlinear Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-32995-6, April.
    14. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    15. Flamm, Bradley J. & Sutula, Kay M. & Meenar, Mahbubur R., 2014. "Changes in access to public transportation for cycle–transit users in response to service reductions," Transport Policy, Elsevier, vol. 35(C), pages 154-161.
    16. Larry J. Leblanc, 1975. "An Algorithm for the Discrete Network Design Problem," Transportation Science, INFORMS, vol. 9(3), pages 183-199, August.
    17. Asadi Bagloee, Saeed & Ceder, Avishai (Avi), 2011. "Transit-network design methodology for actual-size road networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1787-1804.
    18. Manfred M. Fischer & Peter Nijkamp (ed.), 2014. "Handbook of Regional Science," Springer Books, Springer, edition 127, number 978-3-642-23430-9, June.
    19. Bagloee, Saeed Asadi & Asadi, Mohsen, 2015. "Prioritizing road extension projects with interdependent benefits under time constraint," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 196-216.
    20. Vogel, Marie & Hamon, Ronan & Lozenguez, Guillaume & Merchez, Luc & Abry, Patrice & Barnier, Julien & Borgnat, Pierre & Flandrin, Patrick & Mallon, Isabelle & Robardet, Céline, 2014. "From bicycle sharing system movements to users: a typology of Vélo’v cyclists in Lyon based on large-scale behavioural dataset," Journal of Transport Geography, Elsevier, vol. 41(C), pages 280-291.
    21. Stella C. Dafermos, 1972. "The Traffic Assignment Problem for Multiclass-User Transportation Networks," Transportation Science, INFORMS, vol. 6(1), pages 73-87, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei, Yulong & He, Yongming & Kang, Jia & Ran, Bin & Song, Yuting, 2021. "Non-motor vehicle priority lane design and simulation study-take Harbin as an example," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Dieneke Van de Sompel & Liselot Hudders & Lore Vandenberghe, 2020. "Cycling for a Sustainable Future. Stimulating Children to Cycle to School via a Synergetic Combination of Informational and Behavioral Interventions," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    3. Bagloee, Saeed Asadi & (Avi) Ceder, Avishai & Sarvi, Majid & Asadi, Mohsen, 2019. "Is it time to go for no-car zone policies? Braess Paradox Detection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 251-264.
    4. Houde, Maxime & Apparicio, Philippe & Séguin, Anne-Marie, 2018. "A ride for whom: Has cycling network expansion reduced inequities in accessibility in Montreal, Canada?," Journal of Transport Geography, Elsevier, vol. 68(C), pages 9-21.
    5. Qiang Zhang & Shi Qiang Liu & Mahmoud Masoud, 2022. "A traffic congestion analysis by user equilibrium and system optimum with incomplete information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1391-1404, July.
    6. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    8. Yao, Jia & Cheng, Ziyi & Chen, Anthony, 2023. "Bibliometric analysis and systematic literature review of the traffic paradoxes (1968–2022)," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    9. Ashraf, Muhammad Hasan & Chen, Yuwen & Yalcin, Mehmet G., 2022. "Minding Braess Paradox amid third-party logistics hub capacity expansion triggered by demand surge," International Journal of Production Economics, Elsevier, vol. 248(C).
    10. Haipeng Shao & Jiangping Wang & Yin Wang & Sitian Chen, 2018. "Electric Bicycle Lane-Changing Behavior under Strategy Games," Sustainability, MDPI, vol. 10(9), pages 1-12, August.
    11. Senlai Zhu & Jie Ma & Tianpei Tang & Quan Shi, 2020. "A Combined Modal and Route Choice Behavioral Complementarity Equilibrium Model with Users of Vehicles and Electric Bicycles," IJERPH, MDPI, vol. 17(10), pages 1-18, May.
    12. Papaix, Claire & Eranova, Mariya & Zhou, Li, 2023. "Shared mobility research: Looking through a paradox lens," Transport Policy, Elsevier, vol. 133(C), pages 156-167.
    13. Luqi Wang, 2018. "Barriers to Implementing Pro-Cycling Policies: A Case Study of Hamburg," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    14. Tatiana Cantillo & Andrés Vargas & Víctor Cantillo & José Ramos, 2020. "What determines university student’s willingness to pay for bikeways?," Transportation, Springer, vol. 47(5), pages 2267-2286, October.
    15. Demetrio Carmine Festa & Carmen Forciniti, 2019. "Attitude towards Bike Use in Rende, a Small Town in South Italy," Sustainability, MDPI, vol. 11(9), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    2. Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    3. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    4. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    5. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    6. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    7. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    8. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    9. Melo, Lucas Eduardo Araújo de & Isler, Cassiano Augusto, 2023. "Integrating link count data for enhanced estimation of deterrence functions: A case study of short-term bicycle network interventions," Journal of Transport Geography, Elsevier, vol. 112(C).
    10. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    11. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    12. Liu, Hung-Chi & Lin, Jen-Jia, 2022. "Associations of built environments with spatiotemporal patterns of shared scooter use: A comparison with shared bike use," Transport Policy, Elsevier, vol. 126(C), pages 107-119.
    13. Mora-Navarro, Gaspar & Femenia-Ribera, Carmen & Martinez-Llario, Jose & Antequera-Terroso, Enrique, 2018. "Optimising urban routes as a factor to favour sustainable school transport," Journal of Transport Geography, Elsevier, vol. 72(C), pages 211-217.
    14. Bhat, Chandra R. & Dubey, Subodh K. & Nagel, Kai, 2015. "Introducing non-normality of latent psychological constructs in choice modeling with an application to bicyclist route choice," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 341-363.
    15. Burke, Charles M. & Scott, Darren M., 2016. "The space race: A framework to evaluate the potential travel-time impacts of reallocating road space to bicycle facilities," Journal of Transport Geography, Elsevier, vol. 56(C), pages 110-119.
    16. Fontaine, Pirmin & Minner, Stefan, 2014. "Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 163-172.
    17. Yeran Sun & Yunyan Du & Yu Wang & Liyuan Zhuang, 2017. "Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data," IJERPH, MDPI, vol. 14(6), pages 1-12, June.
    18. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    19. Saeed Asadi Bagloee & Majid Sarvi & Avishai Ceder, 2017. "Transit priority lanes in the congested road networks," Public Transport, Springer, vol. 9(3), pages 571-599, October.
    20. Milakis, Dimitris & Athanasopoulos, Konstantinos, 2014. "What about people in cycle network planning? applying participative multicriteria GIS analysis in the case of the Athens metropolitan cycle network," Journal of Transport Geography, Elsevier, vol. 35(C), pages 120-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:87:y:2016:i:c:p:102-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.