IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7006-d579645.html
   My bibliography  Save this article

Sources and Applications of Emerging Active Travel Data: A Review of the Literature

Author

Listed:
  • Mohammad Anwar Alattar

    (Geography & Environment, School of Geosciences, University of Aberdeen, Aberdeen AB24 3UF, UK)

  • Caitlin Cottrill

    (Centre for Transport Research, School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK)

  • Mark Beecroft

    (Centre for Transport Research, School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK)

Abstract

Active travel (AT) has the potential to integrate with, or in some cases substitute for, trips taken by motorized transportation. In this paper we review relevant research on AT outcomes to address the potential of AT and emerging data sources in supporting the transport paradigm shift toward AT. Our analysis identifies physical, mental, built and physical environmental, monetary, and societal outcomes. Traditional methods used to acquire AT data can be divided into manual methods that require substantial user input and automated methods that can be employed for a lengthier period and are more resilient to inclement weather. Due to the proliferation of information and communication technology, emerging data sources are prevailing and can be grouped into social fitness networks, in-house developed apps, participatory mapping, imagery, bike sharing systems, social media, and other types. We assess the emerging data sources in terms of their applications and potential limitations. Furthermore, we identify developing policies and interventions, the potential of imagery, focusing on non-cycling modes and addressing data biases. Finally, we discuss the challenges of data ownership within emerging AT data and the corresponding directions for future work.

Suggested Citation

  • Mohammad Anwar Alattar & Caitlin Cottrill & Mark Beecroft, 2021. "Sources and Applications of Emerging Active Travel Data: A Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7006-:d:579645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diogenes, Mara Chagas & Greene-Roesel, Ryan & Arnold, Lindsay S. & Ragland, David R., 2007. "Pedestrian Counting Methods at Intersections: a Comparative Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt208349wf, Institute of Transportation Studies, UC Berkeley.
    2. Steve O’Hern & Nora Estgfaeller, 2020. "A Scientometric Review of Powered Micromobility," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    3. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    4. Griffin, Greg Phillip & Jiao, Junfeng, 2015. "Crowdsourcing Bicycle Volumes: Exploring the role of volunteered geographic information and established monitoring methods," SocArXiv e3hbc, Center for Open Science.
    5. Oguzoglu, Umut, 2020. "COVID-19 Lockdowns and Decline in Traffic Related Deaths and Injuries," IZA Discussion Papers 13278, Institute of Labor Economics (IZA).
    6. Trichês Lucchesi, Shanna & Larranaga, Ana Margarita & Bettella Cybis, Helena Beatriz & Abreu e Silva, João António de & Arellana, Julian Alberto, 2021. "Are people willing to pay more to live in a walking environment? A multigroup analysis of the impact of walkability on real estate values and their moderation effects in two Global South cities," Research in Transportation Economics, Elsevier, vol. 86(C).
    7. Venter, Zander & Barton, David & gundersen, vegard & Figari, Helene & Nowell, Megan, 2020. "Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway," SocArXiv kbdum, Center for Open Science.
    8. Rafael Hologa & Nils Riach, 2020. "Approaching Bike Hazards via Crowdsourcing of Volunteered Geographic Information," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    9. Park, Yujin & Akar, Gulsah, 2019. "Why do bicyclists take detours? A multilevel regression model using smartphone GPS data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 191-200.
    10. Norwood, Patricia & Eberth, Barbara & Farrar, Shelley & Anable, Jillian & Ludbrook, Anne, 2014. "Active travel intervention and physical activity behaviour: An evaluation," Social Science & Medicine, Elsevier, vol. 113(C), pages 50-58.
    11. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    12. Raturi, Varun & Hong, Jinhyun & McArthur, David Philip & Livingston, Mark, 2021. "The impact of privacy protection measures on the utility of crowdsourced cycling data," Journal of Transport Geography, Elsevier, vol. 92(C).
    13. Griffin, Greg Phillip & Mulhall, Megan & Simek, Chris & Riggs, William W., 2020. "Mitigating Bias in Big Data for Transportation," SocArXiv trbv9, Center for Open Science.
    14. Trisalyn Nelson & Colin Ferster & Karen Laberee & Daniel Fuller & Meghan Winters, 2021. "Crowdsourced data for bicycling research and practice," Transport Reviews, Taylor & Francis Journals, vol. 41(1), pages 97-114, January.
    15. Ryus, Paul & Ferguson, Erin & Laustsen, Kelly M. & Schneider, Robert J. & Proulx, Frank R. & Hull, Tony & Miranda-Moreno, Luis, 2014. "Guidebook on Pedestrian and Bicycle Volume Data Collection," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt11q5p33w, Institute of Transportation Studies, UC Berkeley.
    16. Gössling, Stefan & Choi, Andy & Dekker, Kaely & Metzler, Daniel, 2019. "The Social Cost of Automobility, Cycling and Walking in the European Union," Ecological Economics, Elsevier, vol. 158(C), pages 65-74.
    17. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    18. Richard J. Lee & Ipek N. Sener & S. Nathan Jones, 2017. "Understanding the role of equity in active transportation planning in the United States," Transport Reviews, Taylor & Francis Journals, vol. 37(2), pages 211-226, March.
    19. Kyuhyun Lee & Ipek Nese Sener, 2021. "Strava Metro data for bicycle monitoring: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 41(1), pages 27-47, January.
    20. Dohyung Kim, 2020. "Pedestrian and Bicycle Volume Data Collection Using Drone Technology," Journal of Urban Technology, Taylor & Francis Journals, vol. 27(2), pages 45-60, April.
    21. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    22. Franklin Oliveira & Dilan Nery & Daniel G. Costa & Ivanovitch Silva & Luciana Lima, 2021. "A Survey of Technologies and Recent Developments for Sustainable Smart Cycling," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    23. Jinhyun Hong & David McArthur & Varun Raturi, 2020. "Did Safe Cycling Infrastructure Still Matter During a COVID-19 Lockdown?," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    24. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    25. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    26. Yunmi Park & Minju Kim & Kijin Seong, 2021. "Happy neighborhoods: Investigating neighborhood conditions and sentiments of a shrinking city with Twitter data," Growth and Change, Wiley Blackwell, vol. 52(1), pages 539-566, March.
    27. Zheyan Chen & Dea van Lierop & Dick Ettema, 2020. "Dockless bike-sharing systems: what are the implications?," Transport Reviews, Taylor & Francis Journals, vol. 40(3), pages 333-353, May.
    28. Snizek, Bernhard & Sick Nielsen, Thomas Alexander & Skov-Petersen, Hans, 2013. "Mapping bicyclists’ experiences in Copenhagen," Journal of Transport Geography, Elsevier, vol. 30(C), pages 227-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    2. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    3. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    4. Rodrigo Mora & Pablo Moran, 2020. "Public Bike Sharing Programs Under the Prism of Urban Planning Officials: The Case of Santiago de Chile," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    5. Frimpong Boamah, Emmanuel & Miller, Maya & Diamond, Joshua & Grooms, Wes & Hess, Daniel Baldwin, 2024. "The long journey to equity: A comparative policy analysis of US electric micromobility programs," Journal of Transport Geography, Elsevier, vol. 115(C).
    6. Xie, Xiao-Feng & Wang, Zunjing Jenipher, 2018. "Examining travel patterns and characteristics in a bikesharing network and implications for data-driven decision supports: Case study in the Washington DC area," Journal of Transport Geography, Elsevier, vol. 71(C), pages 84-102.
    7. Wang, Kailai & Chen, Yu-Jen, 2020. "Joint analysis of the impacts of built environment on bikeshare station capacity and trip attractions," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Alexandra Cortez-Ordoñez & Ana Belén Tulcanaza-Prieto, 2023. "The Effect of Gender and Age in Small Bicycle Sharing Systems: Case Study from Logroño, Spain," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    9. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    10. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    11. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    12. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    13. Alattar, Mohammad Anwar & Cottrill, Caitlin & Beecroft, Mark, 2021. "Public participation geographic information system (PPGIS) as a method for active travel data acquisition," Journal of Transport Geography, Elsevier, vol. 96(C).
    14. An, Ran & Zahnow, Renee & Pojani, Dorina & Corcoran, Jonathan, 2019. "Weather and cycling in New York: The case of Citibike," Journal of Transport Geography, Elsevier, vol. 77(C), pages 97-112.
    15. Zhang, Ziru & Krishnakumari, Panchamy & Schulte, Frederik & van Oort, Niels, 2023. "Improving the service of E-bike sharing by demand pattern analysis: A data-driven approach," Research in Transportation Economics, Elsevier, vol. 101(C).
    16. Mao Ye & Yajing Chen & Guixin Yang & Bo Wang & Qizhou Hu, 2020. "Mixed Logit Models for Travelers’ Mode Shifting Considering Bike-Sharing," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    17. Cunha, Isabel & Silva, Cecília & Büttner, Benjamin & Toivonen, Tuuli, 2024. "Pursuing cycling equity? A mixed-methods analysis of cycling plans in European cities," Transport Policy, Elsevier, vol. 145(C), pages 237-246.
    18. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    19. Lili Yang & Simeng Fei & Hongfei Jia & Jingdong Qi & Luyao Wang & Xinning Hu, 2023. "Study on the Relationship between the Spatial Distribution of Shared Bicycle Travel Demand and Urban Built Environment," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    20. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7006-:d:579645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.