IDEAS home Printed from https://ideas.repec.org/a/taf/transr/v41y2021i1p97-114.html
   My bibliography  Save this article

Crowdsourced data for bicycling research and practice

Author

Listed:
  • Trisalyn Nelson
  • Colin Ferster
  • Karen Laberee
  • Daniel Fuller
  • Meghan Winters

Abstract

Cities are promoting bicycling for transportation as an antidote to increased traffic congestion, obesity and related health issues, and air pollution. However, both research and practice have been stalled by lack of data on bicycling volumes, safety, infrastructure, and public attitudes. New technologies such as GPS-enabled smartphones, crowdsourcing tools, and social media are changing the potential sources for bicycling data. However, many of the developments are coming from data science and it can be difficult evaluate the strengths and limitations of crowdsourced data. In this narrative review we provide an overview and critique of crowdsourced data that are being used to fill gaps and advance bicycling behaviour and safety knowledge. We assess crowdsourced data used to map ridership (fitness, bike share, and GPS/accelerometer data), assess safety (web-map tools), map infrastructure (OpenStreetMap), and track attitudes (social media). For each category of data, we discuss the challenges and opportunities they offer for researchers and practitioners. Fitness app data can be used to model spatial variation in bicycling ridership volumes, and GPS/accelerometer data offer new potential to characterise route choice and origin-destination of bicycling trips; however, working with these data requires a high level of training in data science. New sources of safety and near miss data can be used to address underreporting and increase predictive capacity but require grassroots promotion and are often best used when combined with official reports. Crowdsourced bicycling infrastructure data can be timely and facilitate comparisons across multiple cities; however, such data must be assessed for consistency in route type labels. Using social media, it is possible to track reactions to bicycle policy and infrastructure changes, yet linking attitudes expressed on social media platforms with broader populations is a challenge. New data present opportunities for improving our understanding of bicycling and supporting decision making towards transportation options that are healthy and safe for all. However, there are challenges, such as who has data access and how data crowdsourced tools are funded, protection of individual privacy, representativeness of data and impact of biased data on equity in decision making, and stakeholder capacity to use data given the requirement for advanced data science skills. If cities are to benefit from these new data, methodological developments and tools and training for end-users will need to track with the momentum of crowdsourced data.

Suggested Citation

  • Trisalyn Nelson & Colin Ferster & Karen Laberee & Daniel Fuller & Meghan Winters, 2021. "Crowdsourced data for bicycling research and practice," Transport Reviews, Taylor & Francis Journals, vol. 41(1), pages 97-114, January.
  • Handle: RePEc:taf:transr:v:41:y:2021:i:1:p:97-114
    DOI: 10.1080/01441647.2020.1806943
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01441647.2020.1806943
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01441647.2020.1806943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franklin Oliveira & Dilan Nery & Daniel G. Costa & Ivanovitch Silva & Luciana Lima, 2021. "A Survey of Technologies and Recent Developments for Sustainable Smart Cycling," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    2. Cunha, Isabel & Silva, Cecília & Büttner, Benjamin & Toivonen, Tuuli, 2024. "Pursuing cycling equity? A mixed-methods analysis of cycling plans in European cities," Transport Policy, Elsevier, vol. 145(C), pages 237-246.
    3. Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    4. Mohammad Anwar Alattar & Caitlin Cottrill & Mark Beecroft, 2021. "Sources and Applications of Emerging Active Travel Data: A Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    5. Yanni Liang & Jianxin You & Ran Wang & Bo Qin & Shuo Han, 2024. "Urban Transportation Data Research Overview: A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 16(22), pages 1-45, November.
    6. El Bachir Diop & Jérôme Chenal & Stéphane Cédric Koumetio Tekouabou & Rida Azmi, 2022. "Crowdsourcing Public Engagement for Urban Planning in the Global South: Methods, Challenges and Suggestions for Future Research," Sustainability, MDPI, vol. 14(18), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:41:y:2021:i:1:p:97-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.