IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v133y2020icp214-236.html
   My bibliography  Save this article

The role of information availability to passengers in public transport disruptions: An agent-based simulation approach

Author

Listed:
  • Leng, Nuannuan
  • Corman, Francesco

Abstract

In public transport disruptions, a key relation between the services of operating company and passengers’ satisfaction is the disseminated information. This paper proposes rigorous mathematical descriptions to describe the effects of information availability to passengers, including the user equilibrium and non-equilibrium solutions. The information availability in disruption is summarised in a “who-when-where-what” four-dimensional framework. Based on different information, passengers’ behaviours are assumed and simulated to evaluate the benefits of information availability in public transport disruption. An agent-based micro-simulation model (MATSim) is applied for the city of Zürich, Switzerland, for the benefit of activity-based simulation in a multi-modal network. We use an existing day-to-day replanning method, and extend the study with a within-day replanning approach in MATSim, to study agents’ route choices responding to public transport disruption in one single iteration. The disruption is assumed as a rail track blockage between Zürich HB and Zürich Oerlikon via both Zürich Wipkingen and Zürich Hardbrücke. One benchmark of agents’ behaviours without disruption and other three scenarios based on different information are simulated. Statistic results are analysed for all the agents who may be involved in the defined disruption. Agents’ flow in related transit routes and transport modes shows their adaptations to the corresponding information availability. Agents’ delays and scores reveal that information significantly impacts agents’ satisfaction in public transport disruption.

Suggested Citation

  • Leng, Nuannuan & Corman, Francesco, 2020. "The role of information availability to passengers in public transport disruptions: An agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 214-236.
  • Handle: RePEc:eee:transa:v:133:y:2020:i:c:p:214-236
    DOI: 10.1016/j.tra.2020.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419305075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brendan Pender & Graham Currie & Alexa Delbosc & Nirajan Shiwakoti, 2014. "Social Media Use during Unplanned Transit Network Disruptions: A Review of Literature," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 501-521, July.
    2. Lois, David & Monzón, Andrés & Hernández, Sara, 2018. "Analysis of satisfaction factors at urban transport interchanges: Measuring travellers’ attitudes to information, security and waiting," Transport Policy, Elsevier, vol. 67(C), pages 49-56.
    3. Poulopoulou, Maria & Spyropoulou, Ioanna, 2019. "Active traffic management in urban areas: Is it effective for professional drivers? The case of variable message signs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 412-423.
    4. Jeremy D. Shires & Manuel Ojeda-Cabral & Mark Wardman, 2019. "The impact of planned disruptions on rail passenger demand," Transportation, Springer, vol. 46(5), pages 1807-1837, October.
    5. Leo Kroon & Gábor Maróti & Lars Nielsen, 2015. "Rescheduling of Railway Rolling Stock with Dynamic Passenger Flows," Transportation Science, INFORMS, vol. 49(2), pages 165-184, May.
    6. Mark D. Hickman & David H. Bernstein, 1997. "Transit Service and Path Choice Models in Stochastic and Time-Dependent Networks," Transportation Science, INFORMS, vol. 31(2), pages 129-146, May.
    7. Watkins, Kari Edison & Ferris, Brian & Borning, Alan & Rutherford, G. Scott & Layton, David, 2011. "Where Is My Bus? Impact of mobile real-time information on the perceived and actual wait time of transit riders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 839-848, October.
    8. Zanni, Alberto M. & Ryley, Tim J., 2015. "The impact of extreme weather conditions on long distance travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 305-319.
    9. David Charypar & Kai Nagel, 2005. "Generating complete all-day activity plans with genetic algorithms," Transportation, Springer, vol. 32(4), pages 369-397, July.
    10. Cats, O. & Yap, M. & van Oort, N., 2016. "Exposing the role of exposure: Public transport network risk analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 1-14.
    11. Loo, Becky P.Y. & Leung, Kevin Y.K., 2017. "Transport resilience: The Occupy Central Movement in Hong Kong from another perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 100-115.
    12. Han, Qi & Arentze, Theo & Timmermans, Harry & Janssens, Davy & Wets, Geert, 2011. "The effects of social networks on choice set dynamics: Results of numerical simulations using an agent-based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 310-322, May.
    13. Malandri, Caterina & Fonzone, Achille & Cats, Oded, 2018. "Recovery time and propagation effects of passenger transport disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 7-17.
    14. Dziekan, Katrin & Kottenhoff, Karl, 2007. "Dynamic at-stop real-time information displays for public transport: effects on customers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 489-501, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Breschi, Valentina & Ravazzi, Chiara & Strada, Silvia & Dabbene, Fabrizio & Tanelli, Mara, 2023. "Driving electric vehicles’ mass adoption: An architecture for the design of human-centric policies to meet climate and societal goals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    2. Rathachai Chawuthai & Agachai Sumalee & Thanunchai Threepak, 2023. "GPS Data Analytics for the Assessment of Public City Bus Transportation Service Quality in Bangkok," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    3. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
    4. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    5. Beata Chmiel & Barbara Pawlowska & Agnieszka Szmelter-Jarosz, 2023. "Mobility-as-a-Service as a Catalyst for Urban Transport Integration in Conditions of Uncertainty," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    7. Marra, Alessio Daniele & Corman, Francesco, 2020. "Determining an efficient and precise choice set for public transport based on tracking data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 168-186.
    8. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    9. Chengli Cong & Xuan Li & Shiwei Yang & Quan Zhang & Lili Lu & Yang Shi, 2022. "Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
    10. Caterina Malandri & Luca Mantecchini & Filippo Paganelli & Maria Nadia Postorino, 2021. "Public Transport Network Vulnerability and Delay Distribution among Travelers," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    11. Elisa Borowski & Jason Soria & Joseph Schofer & Amanda Stathopoulos, 2020. "Disparities in ridesourcing demand for mobility resilience: A multilevel analysis of neighborhood effects in Chicago, Illinois," Papers 2010.15889, arXiv.org.
    12. Sylwia Agata Bęczkowska & Zuzanna Zysk, 2021. "Safety of People with Special Needs in Public Transport," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    13. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarker, Rumana Islam & Kaplan, Sigal & Mailer, Markus & Timmermans, Harry J.P., 2019. "Applying affective event theory to explain transit users’ reactions to service disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 593-605.
    2. Wen Hua & Ghim Ping Ong, 2018. "Effect of information contagion during train service disruption for an integrated rail-bus transit system," Public Transport, Springer, vol. 10(3), pages 571-594, December.
    3. Marina Lagune-Reutler & Andrew Guthrie & Yingling Fan & David Levinson, 2015. "Transit Riders' Perception of Waiting Time and Stops' Surrounding Environments," Working Papers 000142, University of Minnesota: Nexus Research Group.
    4. Matsumoto, Takayuki & Hidaka, Kazuyoshi, 2015. "Evaluation the effect of mobile information services for public transportation through the empirical research on commuter trains," Technology in Society, Elsevier, vol. 43(C), pages 144-158.
    5. Mulley, Corinne & Clifton, Geoffrey Tilden & Balbontin, Camila & Ma, Liang, 2017. "Information for travelling: Awareness and usage of the various sources of information available to public transport users in NSW," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 111-132.
    6. Thierry Blayac & Maïté Stéphan, 2022. "Travel information provision and commuter behavior changes: Evidence from a french metropolis," Post-Print hal-03649092, HAL.
    7. Cats, Oded & Loutos, Gerasimos, 2013. "Real-time bus arrival information system: an empirical evaluation," Working papers in Transport Economics 2013:25, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    8. Kari Watkins & Alan Borning & G. Rutherford & Brian Ferris & Brian Gill, 2013. "Attitudes of bus operators towards real-time transit information tools," Transportation, Springer, vol. 40(5), pages 961-980, September.
    9. Anne Brown & Whitney LaValle, 2021. "Hailing a change: comparing taxi and ridehail service quality in Los Angeles," Transportation, Springer, vol. 48(2), pages 1007-1031, April.
    10. Giacomo Lozzi & Valerio Gatta & Edoardo Marcucci, 2018. "European urban freight transport policies and research funding: are priorities and H2020 calls aligned?," REGION, European Regional Science Association, vol. 5, pages 53-71.
    11. Frei, Charlotte & Mahmassani, Hani S. & Frei, Andreas, 2015. "Making time count: Traveler activity engagement on urban transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 58-70.
    12. Yingling Fan & Andrew Guthrie & David Levinson, 2015. "Perception of Waiting Time at Transit Stops and Stations," Working Papers 000127, University of Minnesota: Nexus Research Group.
    13. Kuo, Pei-Fen & Lord, Dominique, 2013. "Accounting for site-selection bias in before–after studies for continuous distributions: Characteristics and application using speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 256-269.
    14. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    15. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    16. Van Acker, Veronique & Ho, Loan & Mulley, Corinne, 2021. "“Satisfaction lies in the effort”. Is Gandhi’s quote also true for satisfaction with commuting?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 214-227.
    17. Fan, Yingling & Guthrie, Andrew & Levinson, David, 2016. "Waiting time perceptions at transit stops and stations: Effects of basic amenities, gender, and security," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 251-264.
    18. Cats, Oded & Loutos, Gerasimos, 2016. "Evaluating the added-value of online bus arrival prediction schemes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 35-55.
    19. Md Matiur Rahman & Lina Kattan & S. C. Wirasinghe, 2018. "Trade-offs between headway, fare, and real-time bus information under different weather conditions," Public Transport, Springer, vol. 10(2), pages 217-240, August.
    20. Wang, Po-Chieh & Hsu, Yu-Ting & Hsu, Chia-Wei, 2021. "Analysis of waiting time perception of bus passengers provided with mobile service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 319-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:133:y:2020:i:c:p:214-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.