IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v139y2023icp109-122.html
   My bibliography  Save this article

A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems

Author

Listed:
  • Malandri, Caterina
  • Mantecchini, Luca
  • Postorino, Maria Nadia

Abstract

Transportation system resilience towards events that disrupt system scheduling and nominal functioning is a key challenge for both planners and transport operators. The development of effective policies to enhance resilience requires the analysis of the relationships between the type of disruptive event, the characteristics of the transport system under analysis and its response. This paper aims to contribute to this topic by providing some vulnerability and resilience indices for a complex transport node (airport) within a comprehensive framework based on an element-by-element approach able to identify both disturbances for which transportation systems are more vulnerable (or more resilient) and responses in terms of vulnerability and resilience. Infrastructural, organizational and technological transportation system elements that are more likely affected by given disruptions are the starting point for clustering possible disruptive events. The approach has been tested by simulating four European airports, for which the effects of different types of disruption have been discussed. The obtained results show that the responses of transport system elements to the same type of disruptive events may be different, according to several factors depending on both system features and use of resources. Furthermore, the duration of the disturbance may be relevant for the system vulnerability, while resilience and vulnerability do not necessarily vary in the same way.

Suggested Citation

  • Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
  • Handle: RePEc:eee:trapol:v:139:y:2023:i:c:p:109-122
    DOI: 10.1016/j.tranpol.2023.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23001427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Sean Wilkinson & Sarah Dunn & Shu Ma, 2012. "The vulnerability of the European air traffic network to spatial hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1027-1036, February.
    3. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    4. Zavitsas, Konstantinos & Zis, Thalis & Bell, Michael G.H., 2018. "The impact of flexible environmental policy on maritime supply chain resilience," Transport Policy, Elsevier, vol. 72(C), pages 116-128.
    5. Janić, Milan, 2015. "Reprint of “Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 77-92.
    6. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    7. Igor Linkov & Todd Bridges & Felix Creutzig & Jennifer Decker & Cate Fox-Lent & Wolfgang Kröger & James H. Lambert & Anders Levermann & Benoit Montreuil & Jatin Nathwani & Raymond Nyer & Ortwin Renn &, 2014. "Changing the resilience paradigm," Nature Climate Change, Nature, vol. 4(6), pages 407-409, June.
    8. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    9. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    10. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    11. Lordan, Oriol & Sallan, Jose M. & Simo, Pep, 2014. "Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda," Journal of Transport Geography, Elsevier, vol. 37(C), pages 112-120.
    12. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    13. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    14. Shanjiang Zhu & David M. Levinson, 2012. "Disruptions to Transportation Networks: A Review," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 5-20, Springer.
    15. Leng, Jun-qiang & Zhai, Jing & Li, Qian-wen & Zhao, Lin, 2018. "Construction of road network vulnerability evaluation index based on general travel cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 421-429.
    16. D’Lima, Minette & Medda, Francesca, 2015. "A new measure of resilience: An application to the London Underground," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 35-46.
    17. Nan, Cen & Sansavini, Giovanni, 2017. "A quantitative method for assessing resilience of interdependent infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 35-53.
    18. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    19. Sun, Lishan & Huang, Yuchen & Chen, Yanyan & Yao, Liya, 2018. "Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 12-24.
    20. Zhang, Jianhua & Wang, Shuliang & Wang, Xiaoyuan, 2018. "Comparison analysis on vulnerability of metro networks based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 72-78.
    21. Adjetey-Bahun, Kpotissan & Birregah, Babiga & Châtelet, Eric & Planchet, Jean-Luc, 2016. "A model to quantify the resilience of mass railway transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 1-14.
    22. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    23. Tsai-Yun Liao & Ta-Yin Hu & Yi-No Ko, 2018. "A resilience optimization model for transportation networks under disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 469-489, August.
    24. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    25. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    26. Mota, Miguel Mujica & Boosten, Geert & De Bock, Nico & Jimenez, Edgar & de Sousa, Jorge Pinho, 2017. "Simulation-based turnaround evaluation for Lelystad Airport," Journal of Air Transport Management, Elsevier, vol. 64(PA), pages 21-32.
    27. Postorino, Maria Nadia & Mantecchini, Luca & Paganelli, Filippo, 2019. "Improving taxi-out operations at city airports to reduce CO2 emissions," Transport Policy, Elsevier, vol. 80(C), pages 167-176.
    28. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    29. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    30. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    31. Rothengatter, Werner & Zhang, Junyi & Hayashi, Yoshitsugu & Nosach, Anastasiia & Wang, Kun & Oum, Tae Hoon, 2021. "Pandemic waves and the time after Covid-19 – Consequences for the transport sector," Transport Policy, Elsevier, vol. 110(C), pages 225-237.
    32. Malandri, Caterina & Mantecchini, Luca & Reis, Vasco, 2019. "Aircraft turnaround and industrial actions: How ground handlers' strikes affect airport airside operational efficiency," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 23-32.
    33. Leng, Nuannuan & Corman, Francesco, 2020. "The role of information availability to passengers in public transport disruptions: An agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 214-236.
    34. Malandri, Caterina & Fonzone, Achille & Cats, Oded, 2018. "Recovery time and propagation effects of passenger transport disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 7-17.
    35. Leanne Seeliger & Ivan Turok, 2013. "Towards Sustainable Cities: Extending Resilience with Insights from Vulnerability and Transition Theory," Sustainability, MDPI, vol. 5(5), pages 1-21, May.
    36. Chengpeng Wan & Zaili Yang & Di Zhang & Xinping Yan & Shiqi Fan, 2018. "Resilience in transportation systems: a systematic review and future directions," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 479-498, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Caterina Malandri & Luca Mantecchini & Filippo Paganelli & Maria Nadia Postorino, 2021. "Public Transport Network Vulnerability and Delay Distribution among Travelers," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    3. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    4. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    5. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    7. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    9. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    10. Xu, Zizhen & Chopra, Shauhrat S., 2022. "Network-based Assessment of Metro Infrastructure with a Spatial–temporal Resilience Cycle Framework," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    12. Zhang, Li & Chen, Tingting & Liu, Zhongshan & Yu, Bin & Wang, Yunpeng, 2024. "Analysis of multi-modal public transportation system performance under metro disruptions: A dynamic resilience assessment framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    13. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    14. Lu, Qing-Chang & Xu, Peng-Cheng & Zhang, Jingxiao, 2021. "Infrastructure-based transportation network vulnerability modeling and analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    15. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    16. Nan Zhang & Daniel J. Graham & Daniel Hörcher & Prateek Bansal, 2021. "A causal inference approach to measure the vulnerability of urban metro systems," Transportation, Springer, vol. 48(6), pages 3269-3300, December.
    17. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    19. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:139:y:2023:i:c:p:109-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.