IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9052-d871331.html
   My bibliography  Save this article

Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach

Author

Listed:
  • Chengli Cong

    (School of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Xuan Li

    (School of Maritime and Transportation, Ningbo University, Ningbo 315211, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Road #2, Nanjing 211189, China)

  • Shiwei Yang

    (School of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Quan Zhang

    (School of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Lili Lu

    (School of Maritime and Transportation, Ningbo University, Ningbo 315211, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Road #2, Nanjing 211189, China)

  • Yang Shi

    (Ningbo Urban Planning & Design Institute, Ningbo 315042, China)

Abstract

Once unplanned urban rail disruptions occur, it is essential to evaluate the impacts on public transport passengers since impact estimation results enable transit agencies to verify whether alternative transit services have adequate capacity to evacuate the affected rail passengers and to adopt effective emergency measures in response to the disruptions. This paper focuses on estimating the impacts of unplanned rail line segment disruptions on rail passengers as well as original bus passengers, as the latter are overlooked in existing studies. A method of identifying affected rail passengers based on passenger tap-in time is proposed, which is helpful for evaluating the scale and origin-destination distribution of the affected passengers. Passengers’ response behaviors are analyzed and modeled in a multi-agent simulation system. The system realizes the simulation of the multimodal evacuation process, in which a rule-based logit model is employed to describe passengers’ travel selection behavior and the Monte Carlo method is utilized to address the issue of uncertainty in passengers’ travel selection. In particular, the original bus passengers are integrated into the simulation and interact with rail passengers. Finally, some indicators assessing the impacts on rail passengers and bus passengers are presented, and a case study based on the Ningbo urban rail transit network is conducted.

Suggested Citation

  • Chengli Cong & Xuan Li & Shiwei Yang & Quan Zhang & Lili Lu & Yang Shi, 2022. "Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9052-:d:871331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9052/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9052/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Jinqu & Liu, Jie & Peng, Qiyuan & Yin, Yong, 2022. "Resilience assessment of an urban rail transit network: A case study of Chengdu subway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Bhat, Chandra R., 1998. "Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 495-507, September.
    3. Li, Yang & Yang, Xin & Wu, Jianjun & Sun, Huijun & Guo, Xin & Zhou, Li, 2021. "Discrete-event simulations for metro train operation under emergencies: A multi-agent based model with parallel computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    5. Xingchuan Wang & Enjian Yao & Shasha Liu, 2018. "Travel Choice Analysis under Metro Emergency Context: Utility? Regret? Or Both?," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    6. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    7. Guimarães, Vanessa de Almeida & Leal Junior, Ilton Curty & da Silva, Marcelino Aurélio Vieira, 2018. "Evaluating the sustainability of urban passenger transportation by Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 732-752.
    8. Mo, Baichuan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2022. "Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    9. Li, Binbin & Yao, Enjian & Yamamoto, Toshiyuki & Tang, Ying & Liu, Shasha, 2020. "Exploring behavioral heterogeneities of metro passenger’s travel plan choice under unplanned service disruption with uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 294-306.
    10. Leng, Nuannuan & Corman, Francesco, 2020. "The role of information availability to passengers in public transport disruptions: An agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 214-236.
    11. Sun, Huijun & Wu, Jianjun & Wu, Lijuan & Yan, Xiaoyong & Gao, Ziyou, 2016. "Estimating the influence of common disruptions on urban rail transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 62-75.
    12. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    13. Sun, Lishan & Huang, Yuchen & Chen, Yanyan & Yao, Liya, 2018. "Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 12-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hexin Hu & Jitao Li & Shuai Wu, 2022. "Simulation Evaluation of a Current Limiting Scheme in an Urban Rail Transit Network," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Xinyu Zhuang & Li Zhang & Jie Lu, 2022. "Past—Present—Future: Urban Spatial Succession and Transition of Rail Transit Station Zones in Japan," IJERPH, MDPI, vol. 19(20), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Li & Chen, Tingting & Liu, Zhongshan & Yu, Bin & Wang, Yunpeng, 2024. "Analysis of multi-modal public transportation system performance under metro disruptions: A dynamic resilience assessment framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    2. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    3. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    4. Jianhua Zhang & Ziqi Wang & Shuliang Wang & Shengyang Luan & Wenchao Shao, 2020. "Vulnerability Assessments of Urban Rail Transit Networks Based on Redundant Recovery," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    5. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    6. Nan Zhang & Daniel J. Graham & Daniel Hörcher & Prateek Bansal, 2021. "A causal inference approach to measure the vulnerability of urban metro systems," Transportation, Springer, vol. 48(6), pages 3269-3300, December.
    7. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
    8. Chen, Jingxu & Wang, Shuaian & Liu, Zhiyuan & Guo, Yanyong, 2018. "Network-based optimization modeling of manhole setting for pipeline transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 38-55.
    9. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    10. Zhang, Lin & Lu, Jian & Fu, Bai-bai & Li, Shu-bin, 2019. "A cascading failures model of weighted bus transit route network under route failure perspective considering link prediction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1315-1330.
    11. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    12. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    14. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    15. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    16. Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Xu, Chen & Xu, Xueguo, 2024. "A two-stage resilience promotion approach for urban rail transit networks based on topology enhancement and recovery optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    19. Elisa Borowski & Jason Soria & Joseph Schofer & Amanda Stathopoulos, 2020. "Disparities in ridesourcing demand for mobility resilience: A multilevel analysis of neighborhood effects in Chicago, Illinois," Papers 2010.15889, arXiv.org.
    20. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9052-:d:871331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.