IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v198y2024ics0040162523006224.html
   My bibliography  Save this article

The uncertainties of the carbon peak and the temporal and regional heterogeneity of its driving factors in China

Author

Listed:
  • Yang, Yi
  • Qin, Huan

Abstract

The unbalanced development of regions is the national condition of China. Each province should consider the factors that affect the carbon peak and the differences in implementation conditions. This study adopts methods such as the extremum function equation, the dynamic decoupling path, and geographically and temporally weighted regression model. It discusses the carbon peak trend of G7 countries and Chinese provinces and the spatiotemporal heterogeneity of factors affecting the intensive dynamic path for carbon decoupling. The results show that in China, only Beijing has reached the carbon peak state of G7 countries through coordinated economic growth and carbon intensity reduction. The developed countries of the G7 have either strong or weak decoupling boundary states, while only 13.33 % of provinces have evolved into strong decoupling states along intensive dynamic paths. The influence coefficient of the intensity reduction rate, the growth rate of the marketization index and foreign direct investment increased from 1.89, −0.27 and −0.16 in 2002 to 8.14, 0.32 and 0.55 in 2020, playing an increasingly important role in reaching the carbon peak in China. The factors are influenced by regional heterogeneity, for example, the regression coefficients for the growth of technology contract turnover in the eastern, central, and western provinces are 0.61, 0.50, and 0.08. The impact coefficient of the foreign direct investment growth in the Yangtze River Delta is 1.13, while in the northwestern inland region is −0.19. It indicates that provinces are difficult to shift toward sustainable strong decoupling. However, considering the development stage and provincial spatial heterogeneity of the carbon peak is conducive to promoting intensive dynamic paths and achieving sustainable strong decoupling.

Suggested Citation

  • Yang, Yi & Qin, Huan, 2024. "The uncertainties of the carbon peak and the temporal and regional heterogeneity of its driving factors in China," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006224
    DOI: 10.1016/j.techfore.2023.122937
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523006224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Ding, Suiting & Zhang, Ming & Song, Yan, 2019. "Exploring China's carbon emissions peak for different carbon tax scenarios," Energy Policy, Elsevier, vol. 129(C), pages 1245-1252.
    3. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    4. Leitão, João & Ferreira, Joaquim & Santibanez-González, Ernesto, 2022. "New insights into decoupling economic growth, technological progress and carbon dioxide emissions: Evidence from 40 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    5. Dong, Jia & Li, Cunbin, 2022. "Scenario prediction and decoupling analysis of carbon emission in Jiangsu Province, China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    6. Doan, Bao & Vo, Duc Hong & Pham, Huy, 2023. "The net economic benefits of power plants: International evidence," Energy Policy, Elsevier, vol. 175(C).
    7. Shi, Huiting & Chai, Jian & Lu, Quanying & Zheng, Jiali & Wang, Shouyang, 2022. "The impact of China's low-carbon transition on economy, society and energy in 2030 based on CO2 emissions drivers," Energy, Elsevier, vol. 239(PD).
    8. Bagchi, Prantik & Sahu, Santosh Kumar & Kumar, Ajay & Tan, Kim Hua, 2022. "Analysis of carbon productivity for firms in the manufacturing sector of India," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    9. Lin, Huaxing & Zhou, Ziqian & Chen, Shun & Jiang, Ping, 2023. "Clustering and assessing carbon peak statuses of typical cities in underdeveloped Western China," Applied Energy, Elsevier, vol. 329(C).
    10. Ortega-Ruiz, G. & Mena-Nieto, A. & Golpe, A.A. & García-Ramos, J.E., 2022. "CO2 emissions and causal relationships in the six largest world emitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Acheampong, Alex O. & Dzator, Janet & Dzator, Michael & Salim, Ruhul, 2022. "Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    12. Diniz Oliveira, Thais & Costa Gurgel, Angelo & Tonry, Steve, 2021. "Potential trading partners of a brazilian emissions trading scheme: The effects of linking with a developed region (Europe) and two developing regions (Latin America and China)," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    13. Jebabli, Ikram & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Quantile connectedness between CO2 emissions and economic growth in G7 countries," Resources Policy, Elsevier, vol. 81(C).
    14. Stefan Bouzarovski & Harriet Thomson & Marine Cornelis, 2021. "Confronting Energy Poverty in Europe: A Research and Policy Agenda," Energies, MDPI, vol. 14(4), pages 1-19, February.
    15. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    16. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    17. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    18. Carla Guerriero & Andy Haines & Marco Pagano, 2020. "Health and sustainability in post-pandemic economic policies," Nature Sustainability, Nature, vol. 3(7), pages 494-496, July.
    19. Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
    20. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas, Shujaat & Saqib, Najia & Mohammed, Kamel Si & Sahore, Nidhi & Shahzad, Umer, 2024. "Pathways towards carbon neutrality in low carbon cities: The role of green patents, R&D and energy use for carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    2. Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
    3. Li, Rui & Liu, Qiqi & Cai, Weiguang & Liu, Yuan & Yu, Yanhui & Zhang, Yihao, 2023. "Echelon peaking path of China's provincial building carbon emissions: Considering peak and time constraints," Energy, Elsevier, vol. 271(C).
    4. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    5. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    6. Tang, Liwei & Luo, Mansi & Li, Ke & Zhang, Fan, 2024. "Driving factors and peaking of CO2 emissions: An empirical analysis of Hunan Province," Energy, Elsevier, vol. 289(C).
    7. Zhou, Yiqi & Zou, Shan & Duan, Weili & Chen, Yaning & Takara, Kaoru & Di, Yanfeng, 2022. "Analysis of energy carbon emissions from agroecosystems in Tarim River Basin, China: A pathway to achieve carbon neutrality," Applied Energy, Elsevier, vol. 325(C).
    8. Tian Zhao & Zhixin Liu, 2022. "Drivers of CO 2 Emissions: A Debt Perspective," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    9. Zhe Zhao & Xin Xuan & Fan Zhang & Ying Cai & Xiaoyu Wang, 2022. "Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(10), pages 1-13, September.
    10. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    11. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    12. Niangjijia Nyangchak, 2023. "Decoupling for Carbon Neutrality: An Industrial Structure Perspective from Qinghai, China over 1990–2021," Sustainability, MDPI, vol. 15(23), pages 1-25, December.
    13. Hussain, Jafar & Lee, Chien-Chiang & Chen, Yongxiu, 2022. "Optimal green technology investment and emission reduction in emissions generating companies under the support of green bond and subsidy," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    14. Zhuang, Mufan & Gao, Ziyan & Geng, Yong & Xiao, Shijiang, 2022. "Spatial distribution pattern of embodied natural resources use in China and its relationship with socioeconomic development: From an exergetic perspective," Resources Policy, Elsevier, vol. 79(C).
    15. Wang, Yizhong & Hang, Ye & Jeong, Sujong & Wang, Qunwei, 2023. "Intersectoral transfers and drivers of net CO2 emissions in China incorporating sources and sinks," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    16. Huang, Jing & Han, Wenjing & Zhang, Zhengfeng & Ning, Shanshan & Zhang, Xiaoling, 2024. "The decoupling relationship between land use efficiency and carbon emissions in China: An analysis using the Socio-Ecological Systems (SES) framework," Land Use Policy, Elsevier, vol. 138(C).
    17. Li, Guohao & Chen, Xue & You, Xue-yi, 2023. "System dynamics prediction and development path optimization of regional carbon emissions: A case study of Tianjin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Ying Sun & Long Qian & Zhi Liu, 2022. "The carbon emissions level of China’s service industry: an analysis of characteristics and influencing factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13557-13582, December.
    19. An Cheng & Xinru Han & Guogang Jiang, 2023. "Decomposition and Scenario Analysis of Factors Influencing Carbon Emissions: A Case Study of Jiangsu Province, China," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    20. Hu, Haisheng & Zhao, Laijun & Dong, Wanhao, 2023. "How to achieve the goal of carbon peaking by the energy policy? A simulation using the DCGE model for the case of Shanghai, China," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.