IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224011903.html
   My bibliography  Save this article

Pathway for China's provincial carbon emission peak: A case study of the Jiangsu Province

Author

Listed:
  • Miao, Ankang
  • Yuan, Yue
  • Wu, Han
  • Ma, Xin
  • Shao, Chenyu
  • Xiang, Sheng

Abstract

This study establishes the LEAP-Jiangsu model and uses the improved multilevel logarithmic mean Divisia index, Tapio decoupling, and synergistic effect models to explore the carbon reduction paths. The improved multilevel logarithmic mean Divisia index model analyzed the influencing factors of the historical and future carbon emissions. A provincial LEAP model was established to predict the time and value of carbon emission peaks. The Tapio decoupling and synergistic effect models were used to clarify the relationship between carbon emissions and economic development, the synergistic effect of carbon and pollutant reduction, and the terminal sector's carbon reduction potential. The results show that Jiangsu Province will most likely achieve carbon peaking in 2025∼2030, and the peak carbon emission is about 792∼853.9 Mt. Terminal energy intensity, power production structure, and terminal energy consumption structure are the main influencing factors of carbon reduction, with a cumulative contribution rate of about 74.4 %–83.5 %. The power production structure is critical in promoting the decoupling of economic development and carbon emissions. The contribution rates of energy intensity reduction, industrial structure optimization, improving terminal electrification level, and energy structure adjustment are 30.3 %, 26.2 %, 20.9 %, and 17 %, respectively. Coordinating carbon reduction measures will have better synergistic carbon and pollutant reduction effects.

Suggested Citation

  • Miao, Ankang & Yuan, Yue & Wu, Han & Ma, Xin & Shao, Chenyu & Xiang, Sheng, 2024. "Pathway for China's provincial carbon emission peak: A case study of the Jiangsu Province," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011903
    DOI: 10.1016/j.energy.2024.131417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Dewei & Liu, Dandan & Huang, Anmin & Lin, Jianyi & Xu, Lingxing, 2021. "Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Tin Fai Kwok & Yuan Xu & Xiao Liu & Yee Leung, 2018. "The impacts of economic structure on China’s carbon dioxide emissions: an analysis with reference to other East Asian economies," Climate Policy, Taylor & Francis Journals, vol. 18(10), pages 1235-1245, November.
    3. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    4. Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
    5. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    6. Severin Borenstein & James Bushnell & Frank A. Wolak & Matthew Zaragoza-Watkins, 2019. "Expecting the Unexpected: Emissions Uncertainty and Environmental Market Design," American Economic Review, American Economic Association, vol. 109(11), pages 3953-3977, November.
    7. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    8. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    9. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
    10. Chen, Xiaotong & Yang, Fang & Zhang, Shining & Zakeri, Behnam & Chen, Xing & Liu, Changyi & Hou, Fangxin, 2021. "Regional emission pathways, energy transition paths and cost analysis under various effort-sharing approaches for meeting Paris Agreement goals," Energy, Elsevier, vol. 232(C).
    11. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    13. Ding, Suiting & Zhang, Ming & Song, Yan, 2019. "Exploring China's carbon emissions peak for different carbon tax scenarios," Energy Policy, Elsevier, vol. 129(C), pages 1245-1252.
    14. Chen, Siyuan & Liu, Pei & Li, Zheng, 2020. "Low carbon transition pathway of power sector with high penetration of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    16. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    17. Anu Ramaswami & Kangkang Tong & Andrew Fang & Raj M. Lal & Ajay Singh Nagpure & Yang Li & Huajun Yu & Daqian Jiang & Armistead G. Russell & Lei Shi & Marian Chertow & Yangjun Wang & Shuxiao Wang, 2017. "Urban cross-sector actions for carbon mitigation with local health co-benefits in China," Nature Climate Change, Nature, vol. 7(10), pages 736-742, October.
    18. Xu, Haitao & Pan, Xiongfeng & Guo, Shucen & Lu, Yuduo, 2021. "Forecasting Chinese CO2 emission using a non-linear multi-agent intertemporal optimization model and scenario analysis," Energy, Elsevier, vol. 228(C).
    19. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    20. Burandt, Thorsten & Xiong, Bobby & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 255, pages 1-17.
    21. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    22. Yuantao Yang & Shen Qu & Bofeng Cai & Sai Liang & Zhaohua Wang & Jinnan Wang & Ming Xu, 2020. "Mapping global carbon footprint in China," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    23. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    24. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    25. Xiang, Yue & Wu, Gang & Shen, Xiaodong & Ma, Yuhang & Gou, Jing & Xu, Weiting & Liu, Junyong, 2021. "Low-carbon economic dispatch of electricity-gas systems," Energy, Elsevier, vol. 226(C).
    26. Lin, Boqiang & Xu, Bin, 2018. "Growth of industrial CO2 emissions in Shanghai city: Evidence from a dynamic vector autoregression analysis," Energy, Elsevier, vol. 151(C), pages 167-177.
    27. Kejun Jiang & Xing Zhuang & Ren Miao & Chenmin He, 2013. "China's role in attaining the global 2°C target," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 55-69, March.
    28. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    29. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    30. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    31. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    32. Feng Wang & Changhai Gao & Wulin Zhang & Danwen Huang, 2021. "Industrial Structure Optimization and Low-Carbon Transformation of Chinese Industry Based on the Forcing Mechanism of CO 2 Emission Peak Target," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    33. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
    34. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    35. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    36. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    37. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    38. Burandt, Thorsten & Xiong, Bobby & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors," Applied Energy, Elsevier, vol. 255(C).
    39. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    40. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    41. Tang, Baojun & Li, Ru & Yu, Biying & An, Runying & Wei, Yi-Ming, 2018. "How to peak carbon emissions in China's power sector: A regional perspective," Energy Policy, Elsevier, vol. 120(C), pages 365-381.
    42. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    43. Haikun Wang & Xi Lu & Yu Deng & Yaoguang Sun & Chris P. Nielsen & Yifan Liu & Ge Zhu & Maoliang Bu & Jun Bi & Michael B. McElroy, 2019. "China’s CO2 peak before 2030 implied from characteristics and growth of cities," Nature Sustainability, Nature, vol. 2(8), pages 748-754, August.
    44. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    45. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    46. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    2. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    3. Li, Rui & Liu, Qiqi & Cai, Weiguang & Liu, Yuan & Yu, Yanhui & Zhang, Yihao, 2023. "Echelon peaking path of China's provincial building carbon emissions: Considering peak and time constraints," Energy, Elsevier, vol. 271(C).
    4. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    5. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    6. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    8. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    9. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    10. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    11. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    12. Liu, Junling & Wang, Ke & Zou, Ji & Kong, Ying, 2019. "The implications of coal consumption in the power sector for China’s CO2 peaking target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Chen, Bin & Yan, Jun & Zhu, Xun & Liu, Yue, 2023. "The potential role of renewable power penetration in energy intensity reduction: Evidence from the Chinese provincial electricity sector," Energy Economics, Elsevier, vol. 127(PB).
    14. Haiyan Duan & Xize Dong & Pinlei Xie & Siyan Chen & Baoyang Qin & Zijia Dong & Wei Yang, 2022. "Peaking Industrial CO 2 Emission in a Typical Heavy Industrial Region: From Multi-Industry and Multi-Energy Type Perspectives," IJERPH, MDPI, vol. 19(13), pages 1-30, June.
    15. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    16. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    17. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    18. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    19. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    20. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.