IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v369y2024ics0306261924009632.html
   My bibliography  Save this article

An international perspective on carbon peaking status between a sample of 154 countries

Author

Listed:
  • Sang, Meiyue
  • Shen, Liyin

Abstract

The climate change triggered by carbon emissions has significantly impacted the sustainable development of human society. In line with the understanding on the importance of carbon reduction attached by the international community, most countries have set targets for carbon neutrality. The timing of the carbon peak is crucial for assisting countries in progressing towards the objective of carbon neutrality. This study examines the different carbon peak statuses between a sample of 154 countries in terms of carbon intensity, carbon emissions per capita and total carbon emissions. The data analyzed were collected over the period from 1990 to 2020. This study proposed an innovative two-procedure research method for distinguishing whether a country's carbon emissions have peaked, in which the Mann-Kendall trend test and Tapio decoupling model were applied interactively. The peaking statuses are divided into three types: true peaked, false peaked, and under peaked. The findings indicate that most of the sample countries have achieved the true peaked status of carbon intensity, and nearly one third of them in the true peaked status of carbon emissions per capita. Only a few countries in the true peaked status of total carbon emissions. Countries with higher income levels achieved true peaked status earlier in terms of carbon intensity, carbon emissions per capita and total carbon emissions. Countries with a false peaked status are mostly affected by multiple factors across economic, social and political dimensions.

Suggested Citation

  • Sang, Meiyue & Shen, Liyin, 2024. "An international perspective on carbon peaking status between a sample of 154 countries," Applied Energy, Elsevier, vol. 369(C).
  • Handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009632
    DOI: 10.1016/j.apenergy.2024.123580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Philip R. Lane & Gian Maria Milesi-Ferretti, 2018. "The External Wealth of Nations Revisited: International Financial Integration in the Aftermath of the Global Financial Crisis," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 66(1), pages 189-222, March.
    3. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    4. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    5. Apergis, Nicholas & Christou, Christina & Gupta, Rangan, 2017. "Are there Environmental Kuznets Curves for US state-level CO2 emissions?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 551-558.
    6. Zhang, Chuanguo & Zhao, Wei, 2014. "Panel estimation for income inequality and CO2 emissions: A regional analysis in China," Applied Energy, Elsevier, vol. 136(C), pages 382-392.
    7. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    8. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    9. Dabo Guan & Stephan Klasen & Klaus Hubacek & Kuishuang Feng & Zhu Liu & Kebin He & Yong Geng & Qiang Zhang, 2014. "Determinants of stagnating carbon intensity in China," Nature Climate Change, Nature, vol. 4(11), pages 1017-1023, November.
    10. Ahman, Max, 2006. "Government policy and the development of electric vehicles in Japan," Energy Policy, Elsevier, vol. 34(4), pages 433-443, March.
    11. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    12. Conghui Meng & Yitian Ren & Guangyu Cheng & Nan Yang, 2021. "Coupling Coordination Between Transportation Carrying Capacity and Environment Carrying Capacity," Springer Books, in: Gui Ye & Hongping Yuan & Jian Zuo (ed.), Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate, pages 207-224, Springer.
    13. Abid Rashid Gill & Kuperan K. Viswanathan & Sallahuddin Hassan, 2018. "A test of environmental Kuznets curve (EKC) for carbon emission and potential of renewable energy to reduce green house gases (GHG) in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1103-1114, June.
    14. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    15. Benjamin Mutetwa & Dingani Moyo & Derk Brouwer, 2021. "Trends in Airborne Chrysotile Asbestos Fibre Concentrations in Asbestos Cement Manufacturing Factories in Zimbabwe from 1996 to 2016," IJERPH, MDPI, vol. 18(20), pages 1-14, October.
    16. Al-mulali, Usama & Tang, Chor Foon & Ozturk, Ilhan, 2015. "Estimating the Environment Kuznets Curve hypothesis: Evidence from Latin America and the Caribbean countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 918-924.
    17. Weko, Silvia & Goldthau, Andreas, 2022. "Bridging the low-carbon technology gap? Assessing energy initiatives for the Global South," Energy Policy, Elsevier, vol. 169(C).
    18. Ping Cao & Xiaoxiao Li & Yu Cheng & Han Shen, 2022. "Temporal-Spatial Evolution and Driving Factors of Global Carbon Emission Efficiency," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    19. Ahmad, Ashfaq & Zhao, Yuhuan & Shahbaz, Muhammad & Bano, Sadia & Zhang, Zhonghua & Wang, Song & Liu, Ya, 2016. "Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy," Energy Policy, Elsevier, vol. 96(C), pages 131-143.
    20. Ben-Salha, Ousama & Hkiri, Besma & Aloui, Chaker, 2018. "Sectoral energy consumption by source and output in the U.S.: New evidence from wavelet-based approach," Energy Economics, Elsevier, vol. 72(C), pages 75-96.
    21. Yu Zhang & Xi Chen & Ya Wu & Chenyang Shuai & Liyin Shen & Gui Ye, 2020. "Peaks of transportation CO2 emissions of 119 countries for sustainable development: Results from carbon Kuznets curve," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 550-571, July.
    22. Lin, Huaxing & Zhou, Ziqian & Chen, Shun & Jiang, Ping, 2023. "Clustering and assessing carbon peak statuses of typical cities in underdeveloped Western China," Applied Energy, Elsevier, vol. 329(C).
    23. Melgarejo Duran, Mauricio & Stephen, Sheryl-Ann, 2020. "Internationalization and the capital structure of firms in emerging markets: Evidence from Latin America before and after the financial crisis," Research in International Business and Finance, Elsevier, vol. 54(C).
    24. Daniel Neep, 2018. "Narrating Crisis, Constructing Policy: Economic Ideas and Institutional Change in Syria," New Political Economy, Taylor & Francis Journals, vol. 23(4), pages 495-511, July.
    25. Laura J. Sonter & Diego Herrera & Damian J. Barrett & Gillian L. Galford & Chris J. Moran & Britaldo S. Soares-Filho, 2017. "Mining drives extensive deforestation in the Brazilian Amazon," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    26. Adom, Philip Kofi & Amuakwa-Mensah, Franklin & Agradi, Mawunyo Prosper & Nsabimana, Aimable, 2021. "Energy poverty, development outcomes, and transition to green energy," Renewable Energy, Elsevier, vol. 178(C), pages 1337-1352.
    27. Grigoli, Francesco & Herman, Alexander & Swiston, Andrew, 2019. "A crude shock: Explaining the short-run impact of the 2014–16 oil price decline across exporters," Energy Economics, Elsevier, vol. 78(C), pages 481-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shutian Cui & Renlong Wang, 2024. "A Novel {\delta}-SBM-OPA Approach for Policy-Driven Analysis of Carbon Emission Efficiency under Uncertainty in the Chinese Industrial Sector," Papers 2408.11600, arXiv.org, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yi & Qin, Huan, 2024. "The uncertainties of the carbon peak and the temporal and regional heterogeneity of its driving factors in China," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    2. Donghui Lv & Ruru Wang & Yu Zhang, 2021. "Sustainability Assessment Based on Integrating EKC with Decoupling: Empirical Evidence from China," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    3. Bo Yang & Minhaj Ali & Shujahat Haider Hashmi & Mohsin Shabir, 2020. "Income Inequality and CO 2 Emissions in Developing Countries: The Moderating Role of Financial Instability," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    4. Yannan Zhou & Jixia Huang & Mingxiang Huang & Yicheng Lin, 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia," IJERPH, MDPI, vol. 16(10), pages 1-14, May.
    5. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    6. Mehmet Balcilar & Zeynel Abidin Ozdemir & Huseyin Ozdemir & Muhammad Shahbaz, 2018. "Carbon dioxide emissions, energy consumption and economic growth: The historical decomposition evidence from G-7 countries," Working Papers 15-41, Eastern Mediterranean University, Department of Economics.
    7. Pin Chen & Xiyue Wang & Zexia Yang & Changfeng Shi, 2024. "Research on Spatial Heterogeneity, Impact Mechanism, and Carbon Peak Prediction of Carbon Emissions in the Yangtze River Delta Urban Agglomeration," Energies, MDPI, vol. 17(23), pages 1-21, November.
    8. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wang, Jia, 2016. "Interregional differences of coal carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 96(C), pages 1-13.
    9. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    10. Mignamissi, Dieudonné, 2020. "Pollution emission and institutions nexus in Africa," MPRA Paper 99017, University Library of Munich, Germany.
    11. Drudi, Francesco & Moench, Emanuel & Holthausen, Cornelia & Weber, Pierre-François & Ferrucci, Gianluigi & Setzer, Ralph & Adao, Bernardino & Dées, Stéphane & Alogoskoufis, Spyros & Téllez, Mar Delgad, 2021. "Climate change and monetary policy in the euro area," Occasional Paper Series 271, European Central Bank.
    12. Chen, Jiandong & Xu, Chong & Huang, Shuo & Shen, Zhiyang & Song, Malin & Wang, Shiqi, 2022. "Adjusted carbon intensity in China: Trend, driver, and network," Energy, Elsevier, vol. 251(C).
    13. Wolde-Rufael, Yemane & Idowu, Samuel, 2017. "Income distribution and CO2 emission: A comparative analysis for China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1336-1345.
    14. Sanglim Lee & Minkyung Kim & Jiwoong Lee, 2017. "Analyzing the Impact of Nuclear Power on CO 2 Emissions," Sustainability, MDPI, vol. 9(8), pages 1-13, August.
    15. Hao, Yu & Zhang, Tianli & Jing, Leijie & Xiao, Linqi, 2019. "Would the decoupling of electricity occur along with economic growth? Empirical evidence from the panel data analysis for 100 Chinese cities," Energy, Elsevier, vol. 180(C), pages 615-625.
    16. Yu Zhang & Xi Chen & Ya Wu & Chenyang Shuai & Liyin Shen & Gui Ye, 2020. "Peaks of transportation CO2 emissions of 119 countries for sustainable development: Results from carbon Kuznets curve," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 550-571, July.
    17. Olatunji A. Shobande & Simplice A. Asongu, 2021. "The rise and fall of the energy-carbon Kuznets curve: Evidence from Africa," Working Papers 21/069, European Xtramile Centre of African Studies (EXCAS).
    18. Kuriyama, Akihisa & Abe, Naoya, 2018. "Ex-post assessment of the Kyoto Protocol – quantification of CO2 mitigation impact in both Annex B and non-Annex B countries-," Applied Energy, Elsevier, vol. 220(C), pages 286-295.
    19. Ying Sun & Long Qian & Zhi Liu, 2022. "The carbon emissions level of China’s service industry: an analysis of characteristics and influencing factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13557-13582, December.
    20. Zedong Yang & Hui Sun & Weipeng Yuan & Xuechao Xia, 2022. "The Spatial Pattern of the Prefecture-Level Carbon Emissions and Its Spatial Mismatch in China with the Level of Economic Development," Sustainability, MDPI, vol. 14(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.