IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1659-d925152.html
   My bibliography  Save this article

Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region

Author

Listed:
  • Zhe Zhao

    (School of Economics, Liaoning University, Shenyang 110136, China)

  • Xin Xuan

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Fan Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Ying Cai

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Xiaoyu Wang

    (College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China)

Abstract

The Beijing–Tianjin–Hebei region (BTH) is a key area with large carbon emissions in China and a demonstration area for renewable energy development, facing the dual test of energy structure transformation and the achievement of carbon peak and neutrality goals. This study analyzes the main influencing factors of carbon emissions based on Kaya’s identity, establishes a socio-economic-energy-carbon emission coupled with system dynamics (SD) model, and designs five scenarios to predict and compare the future trends of energy consumption, renewable energy development and carbon emissions in BTH, respectively. The results show that (1) under the baseline scenario, energy carbon emissions in BTH will peak around 2034, and the intermediate development scenario, the transition development scenario and the sustainable development scenario all show that the region can achieve the emission peak target around 2030. (2) The renewable energy output value of BTH will reach CNY 486.46 billion in 2050 under the baseline scenario, and the share of renewable energy consumption will exceed 50% under the sustainable development scenario. (3) Increasing energy tax regulation and scientific and technological investment and adopting more stringent policy constraints can guarantee the lowest emission intensity while maintaining the current social and economic development level. This study predicts the development of a renewable energy industry and carbon emissions in BTH under different scenarios and provides policy recommendations for the future energy transition in the region.

Suggested Citation

  • Zhe Zhao & Xin Xuan & Fan Zhang & Ying Cai & Xiaoyu Wang, 2022. "Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(10), pages 1-13, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1659-:d:925152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Danish, & Ulucak, Recep, 2021. "Renewable energy, technological innovation and the environment: A novel dynamic auto-regressive distributive lag simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Cheng, Yuanyuan & Yao, Xin, 2021. "Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Homer, J.B. & Hirsch, G.B., 2006. "System dynamics modeling for public health: Background and opportunities," American Journal of Public Health, American Public Health Association, vol. 96(3), pages 452-458.
    5. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    6. Zheng, Huanyu & Song, Malin & Shen, Zhiyang, 2021. "The evolution of renewable energy and its impact on carbon reduction in China," Energy, Elsevier, vol. 237(C).
    7. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    8. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    9. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    10. Balezentis, Tomas, 2020. "Shrinking ageing population and other drivers of energy consumption and CO2 emission in the residential sector: A case from Eastern Europe," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shimei Weng & Jianbao Chen, 2023. "How Does Industrial Upgrading Affect Carbon Productivity in China’s Service Industry?," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    2. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naqvi, Bushra & Rizvi, Syed Kumail Abbas & Mirza, Nawazish & Umar, Muhammad, 2023. "Financial market development: A potentiating policy choice for the green transition in G7 economies," International Review of Financial Analysis, Elsevier, vol. 87(C).
    2. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    3. Yang, Yi & Qin, Huan, 2024. "The uncertainties of the carbon peak and the temporal and regional heterogeneity of its driving factors in China," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    4. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    5. Lee, Chi-Chuan & Zhang, Jian & Hou, Shanshuai, 2023. "The impact of regional renewable energy development on environmental sustainability in China," Resources Policy, Elsevier, vol. 80(C).
    6. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    7. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    8. Ma, Y. & Li, Y.P. & Mei, H. & Nie, S. & Huang, G.H. & Li, Y.F. & Suo, C., 2024. "Potential way to plan China's power system (2021–2050) for climate change mitigation," Renewable Energy, Elsevier, vol. 225(C).
    9. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    10. Teng, Xiangyu & Zhuang, Weiwei & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "China's path of carbon neutralization to develop green energy and improve energy efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 397-408.
    11. Liu, Xiaoxiao & Niu, Qian & Dong, Shuli & Zhong, Shuiying, 2023. "How does renewable energy consumption affect carbon emission intensity? Temporal-spatial impact analysis in China," Energy, Elsevier, vol. 284(C).
    12. Lee, Chi-Chuan & Lee, Chien-Chiang, 2024. "Not all are alike: Assessing the effect of geopolitical risk on regional renewable energy development in China," Renewable Energy, Elsevier, vol. 222(C).
    13. Zhong, Mei-Rui & Cao, Meng-Yuan & Zou, Han, 2022. "The carbon reduction effect of ICT: A perspective of factor substitution," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    14. Zhan, Jinyan & Wang, Chao & Wang, Huihui & Zhang, Fan & Li, Zhihui, 2024. "Pathways to achieve carbon emission peak and carbon neutrality by 2060: A case study in the Beijing-Tianjin-Hebei region, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Li, Weilong & Han, Mengyao, 2023. "Mapping renewable energy transition worldwide: Gravity trajectory, contribution decomposition and income levels," Renewable Energy, Elsevier, vol. 206(C), pages 1265-1274.
    16. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    17. Xu, Bin & Lin, Boqiang, 2023. "Assessing the green energy development in China and its carbon reduction effect: Using a quantile approach," Energy Economics, Elsevier, vol. 126(C).
    18. Jiang, Wei & Sun, Yifei, 2023. "Which is the more important factor of carbon emission, coal consumption or industrial structure?," Energy Policy, Elsevier, vol. 176(C).
    19. Chen, Zeyu & Tang, Yuhong & Shen, Hebin & Liu, Jiali & Hu, Zheng, 2024. "Threshold effects of Government digital development and land resource disparity on Urban carbon efficiency in China," Resources Policy, Elsevier, vol. 94(C).
    20. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1659-:d:925152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.