IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v161y2020ics0040162520311458.html
   My bibliography  Save this article

What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective

Author

Listed:
  • Nastjuk, Ilja
  • Herrenkind, Bernd
  • Marrone, Mauricio
  • Brendel, Alfred Benedikt
  • Kolbe, Lutz M.

Abstract

Autonomous driving is believed to provide numerous benefits for individuals and society, including increased road safety, reduced traffic congestion, and an improved ecological footprint. However, many barriers still hinder the widespread acceptance of autonomous vehicles. Research has proposed governmental policy strategies to accelerate the diffusion of autonomous driving, but less is known about end-user perceptions of this innovative technology. First, we employ a qualitative research design to identify the elements attributed to individual acceptance of autonomous driving. Furthermore, we organize a research model based on the technology acceptance model, validated with an online survey of 316 participants. The findings reveal how social influence, system characteristics, and individual factors determine individual acceptance of autonomous driving. The research helps to strengthen the existing body of knowledge by highlighting individual perceptions, with implications for practitioners.

Suggested Citation

  • Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:tefoso:v:161:y:2020:i:c:s0040162520311458
    DOI: 10.1016/j.techfore.2020.120319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162520311458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    2. Viswanath Venkatesh, 2000. "Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model," Information Systems Research, INFORMS, vol. 11(4), pages 342-365, December.
    3. Ritu Agarwal & Jayesh Prasad, 1998. "A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology," Information Systems Research, INFORMS, vol. 9(2), pages 204-215, June.
    4. Greenblatt, Jeffery & Shaheen, Susan PhD, 2015. "Automated Vehicles, On-Demand Mobility and Environmental Impacts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt23r1h80t, Institute of Transportation Studies, UC Berkeley.
    5. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    6. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    7. Penmetsa, Praveena & Adanu, Emmanuel Kofi & Wood, Dustin & Wang, Teng & Jones, Steven L., 2019. "Perceptions and expectations of autonomous vehicles – A snapshot of vulnerable road user opinion," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 9-13.
    8. Schweitzer, Nicola & Hofmann, Rupert & Meinheit, Andreas, 2019. "Strategic customer foresight: From research to strategic decision-making using the example of highly automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 49-65.
    9. Dacko, Scott G. & Spalteholz, Carolin, 2014. "Upgrading the city: Enabling intermodal travel behaviour," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 222-235.
    10. Gary C. Moore & Izak Benbasat, 1991. "Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation," Information Systems Research, INFORMS, vol. 2(3), pages 192-222, September.
    11. Kleijnen, Mirella & Lee, Nick & Wetzels, Martin, 2009. "An exploration of consumer resistance to innovation and its antecedents," Journal of Economic Psychology, Elsevier, vol. 30(3), pages 344-357, June.
    12. Felix Becker & Kay W. Axhausen, 2017. "Literature review on surveys investigating the acceptance of automated vehicles," Transportation, Springer, vol. 44(6), pages 1293-1306, November.
    13. En Mao & Mark Srite & Jason Bennett Thatcher & Onur Yaprak, 2005. "A Research Model for Mobile Phone Service Behaviors: Empirical Validation in the U.S. and Turkey," Journal of Global Information Technology Management, Taylor & Francis Journals, vol. 8(4), pages 7-28, October.
    14. Jordi Brandts & Gary Charness, 2000. "Hot vs. Cold: Sequential Responses and Preference Stability in Experimental Games," Experimental Economics, Springer;Economic Science Association, vol. 2(3), pages 227-238, March.
    15. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    16. Adnan, Nadia & Md Nordin, Shahrina & bin Bahruddin, Mohamad Ariff & Ali, Murad, 2018. "How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 819-836.
    17. Hengstler, Monika & Enkel, Ellen & Duelli, Selina, 2016. "Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 105-120.
    18. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    19. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    20. Thomas Leicht & Anis Chtourou & Kamel Ben Youssef, 2018. "Consumer innovativeness and intentioned autonomous car adoption," Post-Print hal-02511554, HAL.
    21. Merfeld, Katrin & Wilhelms, Mark-Philipp & Henkel, Sven & Kreutzer, Karin, 2019. "Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 66-81.
    22. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    23. Anania, Emily C. & Rice, Stephen & Walters, Nathan W. & Pierce, Matthew & Winter, Scott R. & Milner, Mattie N., 2018. "The effects of positive and negative information on consumers’ willingness to ride in a driverless vehicle," Transport Policy, Elsevier, vol. 72(C), pages 218-224.
    24. Hohenberger, Christoph & Spörrle, Matthias & Welpe, Isabell M., 2017. "Not fearless, but self-enhanced: The effects of anxiety on the willingness to use autonomous cars depend on individual levels of self-enhancement," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 40-52.
    25. Teo, T. S. H. & Pok, Siau Heong, 2003. "Adoption of WAP-enabled mobile phones among Internet users," Omega, Elsevier, vol. 31(6), pages 483-498, December.
    26. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    27. Benleulmi, Ahmed Ziad & Blecker, Thorsten, 2017. "Investigating the factors influencing the acceptance of fully autonomous cars," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Digitalization in Supply Chain Management and Logistics: Smart and Digital Solutions for an Industry 4.0 Environment. Proceedings of the Hamburg Inter, volume 23, pages 99-115, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    28. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    29. Midgley, David F & Dowling, Grahame R, 1993. "A Longitudinal Study of Product Form Innovation: The Interaction between Predispositions and Social Messages," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 19(4), pages 611-625, March.
    30. Araz Taeihagh & Hazel Si Min Lim, 2019. "Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 103-128, January.
    31. Grant-Muller, Susan & Usher, Mark, 2014. "Intelligent Transport Systems: The propensity for environmental and economic benefits," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 149-166.
    32. Teresa Brell & Ralf Philipsen & Martina Ziefle, 2019. "sCARy! Risk Perceptions in Autonomous Driving: The Influence of Experience on Perceived Benefits and Barriers," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 342-357, February.
    33. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    34. Shirley Taylor & Peter A. Todd, 1995. "Understanding Information Technology Usage: A Test of Competing Models," Information Systems Research, INFORMS, vol. 6(2), pages 144-176, June.
    35. Bruner, Gordon II & Kumar, Anand, 2005. "Explaining consumer acceptance of handheld Internet devices," Journal of Business Research, Elsevier, vol. 58(5), pages 553-558, May.
    36. Azim Shariff & Jean-François Bonnefon & Iyad Rahwan, 2017. "Psychological roadblocks to the adoption of self-driving vehicles," Nature Human Behaviour, Nature, vol. 1(10), pages 694-696, October.
    37. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McLeay, Fraser & Olya, Hossein & Liu, Hongfei & Jayawardhena, Chanaka & Dennis, Charles, 2022. "A multi-analytical approach to studying customers motivations to use innovative totally autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Samadzad, Mahdi & Nosratzadeh, Hossein & Karami, Hossein & Karami, Ali, 2023. "What are the factors affecting the adoption and use of electric scooter sharing systems from the end user's perspective?," Transport Policy, Elsevier, vol. 136(C), pages 70-82.
    3. Peng Jing & Gang Xu & Yuexia Chen & Yuji Shi & Fengping Zhan, 2020. "The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review," Sustainability, MDPI, vol. 12(5), pages 1-26, February.
    4. Iviane Ramos-de-Luna & Francisco Montoro-Ríos & Francisco Liébana-Cabanillas, 2016. "Determinants of the intention to use NFC technology as a payment system: an acceptance model approach," Information Systems and e-Business Management, Springer, vol. 14(2), pages 293-314, May.
    5. Xing, Yingying & Zhou, Huiyu & Han, Xiao & Zhang, Meng & Lu, Jian, 2022. "What influences vulnerable road users’ perceptions of autonomous vehicles? A comparative analysis of the 2017 and 2019 Pittsburgh surveys," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    6. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    7. Gao, Tao (Tony) & Rohm, Andrew J. & Sultan, Fareena & Pagani, Margherita, 2013. "Consumers un-tethered: A three-market empirical study of consumers' mobile marketing acceptance," Journal of Business Research, Elsevier, vol. 66(12), pages 2536-2544.
    8. Nripendra P. Rana & Yogesh K. Dwivedi & Banita Lal & Michael D. Williams & Marc Clement, 2017. "Citizens’ adoption of an electronic government system: towards a unified view," Information Systems Frontiers, Springer, vol. 19(3), pages 549-568, June.
    9. Jing, Peng & Wang, Baihui & Cai, Yunhao & Wang, Bichen & Huang, Jiahui & Yang, Chenglu & Jiang, Chengxi, 2023. "What is the public really concerned about the AV crash? Insights from a combined analysis of social media and questionnaire survey," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    10. Zhao, Xiaoyun & Susilo, Yusak O. & Pernestål, Anna, 2022. "The dynamic and long-term changes of automated bus service adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 450-463.
    11. Türker, Cansu & Altay, Burak Can & Okumuş, Abdullah, 2022. "Understanding user acceptance of QR code mobile payment systems in Turkey: An extended TAM," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    12. Andrei OGREZEANU, 2015. "Models Of Technology Adoption: An Integrative Approach," Network Intelligence Studies, Romanian Foundation for Business Intelligence, Editorial Department, issue 5, pages 55-67, June.
    13. Avornyo, Philip & Fang, Jiaming & Antwi, Collins Opoku & Aboagye, Michael Osei & Boadi, Evans Asante, 2019. "Are customers still with us? The influence of optimum stimulation level and IT-specific traits on mobile banking discontinuous usage intentions," Journal of Retailing and Consumer Services, Elsevier, vol. 47(C), pages 348-360.
    14. Rajak, Manindra & Shaw, Krishnendu, 2021. "An extension of technology acceptance model for mHealth user adoption," Technology in Society, Elsevier, vol. 67(C).
    15. Wajeeha Aslam & Marija Ham & Imtiaz Arif, 2017. "Consumer Behavioral Intentions towards Mobile Payment Services: An Empirical Analysis in Pakistan," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 29(2), pages 161-176.
    16. Cansu TÜRKER & Abdullah OKUMUŞ, 2019. "Mobil Ödeme Kullanımına Yönelik Niyet ve Algıların SosyoDemografik Özelliklere Göre Farklılıklarının İncelenmesi," Istanbul Management Journal, Istanbul University Business School, vol. 0(87), pages 111-139, December.
    17. Winter, Scott R. & Rice, Stephen & Lamb, Tracy L., 2020. "A prediction model of Consumer's willingness to fly in autonomous air taxis," Journal of Air Transport Management, Elsevier, vol. 89(C).
    18. Christopher R. Plouffe & John S. Hulland & Mark Vandenbosch, 2001. "Research Report: Richness Versus Parsimony in Modeling Technology Adoption Decisions—Understanding Merchant Adoption of a Smart Card-Based Payment System," Information Systems Research, INFORMS, vol. 12(2), pages 208-222, June.
    19. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    20. Rejali, Sina & Aghabayk, Kayvan & Esmaeli, Saeed & Shiwakoti, Nirajan, 2023. "Comparison of technology acceptance model, theory of planned behavior, and unified theory of acceptance and use of technology to assess a priori acceptance of fully automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:161:y:2020:i:c:s0040162520311458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.