IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i2p342-357.html
   My bibliography  Save this article

sCARy! Risk Perceptions in Autonomous Driving: The Influence of Experience on Perceived Benefits and Barriers

Author

Listed:
  • Teresa Brell
  • Ralf Philipsen
  • Martina Ziefle

Abstract

The increasing development of autonomous vehicles (AVs) influences the future of transportation. Beyond the potential benefits in terms of safety, efficiency, and comfort, also potential risks of novel driving technologies need to be addressed. In this article, we explore risk perceptions toward connected and autonomous driving in comparison to conventional driving. In order to gain a deeper understanding of individual risk perceptions, we adopted a two‐step empirical procedure. First, focus groups (N=17) were carried out to identify relevant risk factors for autonomous and connected driving. Further, a questionnaire was developed, which was answered by 516 German participants. In the questionnaire, three driving technologies (connected, autonomous, conventional) were evaluated via semantic differential (rating scale to identify connotative meaning of technologies). Second, participants rated perceived risk levels (for data, traffic environment, vehicle, and passenger) and perceived benefits and barriers of connected/autonomous driving. Since previous experience with automated functions of driver assistance systems can have an impact on the evaluation, three experience groups have been formed. The effect of experience on benefits and barrier perceptions was also analyzed. Risk perceptions were significantly smaller for conventional driving compared to connected/autonomous driving. With increasing experience, risk perception decreases for novel driving technologies with one exception: the perceived risk in handling data is not influenced by experience. The findings contribute to an understanding of risk perception in autonomous driving, which helps to foster a successful implementation of AVs on the market and to develop public information strategies.

Suggested Citation

  • Teresa Brell & Ralf Philipsen & Martina Ziefle, 2019. "sCARy! Risk Perceptions in Autonomous Driving: The Influence of Experience on Perceived Benefits and Barriers," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 342-357, February.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:2:p:342-357
    DOI: 10.1111/risa.13190
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13190
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ortwin Renn & Christina Benighaus, 2013. "Perception of technological risk: insights from research and lessons for risk communication and management," Journal of Risk Research, Taylor & Francis Journals, vol. 16(3-4), pages 293-313, April.
    2. R. J. Overy, 1975. "Cars, Roads, and Economic Recovery in Germany, 1932–8," Economic History Review, Economic History Society, vol. 28(3), pages 466-483, August.
    3. Hohenberger, Christoph & Spörrle, Matthias & Welpe, Isabell M., 2016. "How and why do men and women differ in their willingness to use automated cars? The influence of emotions across different age groups," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 374-385.
    4. Hohenberger, Christoph & Spörrle, Matthias & Welpe, Isabell M., 2017. "Not fearless, but self-enhanced: The effects of anxiety on the willingness to use autonomous cars depend on individual levels of self-enhancement," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 40-52.
    5. Roger E. Kasperson & Ortwin Renn & Paul Slovic & Halina S. Brown & Jacque Emel & Robert Goble & Jeanne X. Kasperson & Samuel Ratick, 1988. "The Social Amplification of Risk: A Conceptual Framework," Risk Analysis, John Wiley & Sons, vol. 8(2), pages 177-187, June.
    6. Ortwin Renn, 1998. "Three decades of risk research: accomplishments and new challenges," Journal of Risk Research, Taylor & Francis Journals, vol. 1(1), pages 49-71, January.
    7. Mourad Dakhli & Dirk De Clercq, 2004. "Human capital, social capital, and innovation: a multi-country study," Entrepreneurship & Regional Development, Taylor & Francis Journals, vol. 16(2), pages 107-128, March.
    8. Gross, Catherine, 2007. "Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2727-2736, May.
    9. Simone Dohle & Carmen Keller & Michael Siegrist, 2012. "Fear and anger: antecedents and consequences of emotional responses to mobile communication," Journal of Risk Research, Taylor & Francis Journals, vol. 15(4), pages 435-446, April.
    10. van Heek, Julia & Arning, Katrin & Ziefle, Martina, 2017. "Reduce, reuse, recycle: Acceptance of CO2-utilization for plastic products," Energy Policy, Elsevier, vol. 105(C), pages 53-66.
    11. Ali Siddiq Alhakami & Paul Slovic, 1994. "A Psychological Study of the Inverse Relationship Between Perceived Risk and Perceived Benefit," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1085-1096, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain, Qinaat & Alhajyaseen, Wael K.M. & Adnan, Muhammad & Almallah, Mustafa & Almukdad, Abdulkarim & Alqaradawi, Mohammed, 2021. "Autonomous vehicles between anticipation and apprehension: Investigations through safety and security perceptions," Transport Policy, Elsevier, vol. 110(C), pages 440-451.
    2. Ljubi, Klara & Groznik, Aleš, 2023. "Role played by social factors and privacy concerns in autonomous vehicle adoption," Transport Policy, Elsevier, vol. 132(C), pages 1-15.
    3. Xing, Yingying & Zhou, Huiyu & Han, Xiao & Zhang, Meng & Lu, Jian, 2022. "What influences vulnerable road users’ perceptions of autonomous vehicles? A comparative analysis of the 2017 and 2019 Pittsburgh surveys," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    4. Diana Khan & Akimasa Fujiwara & Yoram Shiftan & Makoto Chikaraishi & Einat Tenenboim & Thi Anh Hong Nguyen, 2022. "Risk Perceptions and Public Acceptance of Autonomous Vehicles: A Comparative Study in Japan and Israel," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    5. Du, Manqing & Zhang, Tingru & Liu, Jinting & Xu, Zhigang & Liu, Peng, 2022. "Rumors in the air? Exploring public misconceptions about automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 237-252.
    6. Chong Li & Yingqi Li, 2023. "Factors Influencing Public Risk Perception of Emerging Technologies: A Meta-Analysis," Sustainability, MDPI, vol. 15(5), pages 1-37, February.
    7. Yukari Jessica Tham & Takaaki Hashimoto & Kaori Karasawa, 2022. "Underlying dimensions of benefit and risk perception and their effects on people’s acceptance of conditionally/fully automated vehicles," Transportation, Springer, vol. 49(6), pages 1715-1736, December.
    8. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    9. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "Heterogenous evaluations of autonomous vehicle services: An extended theoretical framework and empirical evidence," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    10. Dai, Jingchen & Wang, Xiaokun Cara & Ma, Wenxin & Li, Ruimin, 2023. "Future transport vision propensity segments: A latent class analysis of autonomous taxi market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. BERTRANDIAS, Laurent & LOWE, Ben & SADIK-ROZSNYAI, Orsolya & CARRICANO, Manu, 2021. "Delegating decision-making to autonomous products: A value model emphasizing the role of well-being," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Wei Wei & Jie Sun & Wei Miao & Tong Chen & Hanchu Sun & Shuyuan Lin & Chao Gu, 2024. "Using the Extended Unified Theory of Acceptance and Use of Technology to explore how to increase users’ intention to take a robotaxi," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    13. Elena García-Jiménez & Sara Poveda-Reyes & Gemma Dolores Molero & Francisco Enrique Santarremigia & Andrea Gorrini & Yvonne Hail & Augustus Ababio-Donkor & Maria Chiara Leva & Filomena Mauriello, 2020. "Methodology for Gender Analysis in Transport: Factors with Influence in Women’s Inclusion as Professionals and Users of Transport Infrastructures," Sustainability, MDPI, vol. 12(9), pages 1-32, May.
    14. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Peng & Zhang, Yawen & He, Zhen, 2019. "The effect of population age on the acceptable safety of self-driving vehicles," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 341-347.
    2. Liu, Bingsheng & Xu, Yinghua & Yang, Yang & Lu, Shijian, 2021. "How public cognition influences public acceptance of CCUS in China: Based on the ABC (affect, behavior, and cognition) model of attitudes," Energy Policy, Elsevier, vol. 156(C).
    3. Visschers, Vivianne H.M. & Siegrist, Michael, 2012. "Fair play in energy policy decisions: Procedural fairness, outcome fairness and acceptance of the decision to rebuild nuclear power plants," Energy Policy, Elsevier, vol. 46(C), pages 292-300.
    4. Hung‐Chih Hung & Tzu‐Wen Wang, 2011. "Determinants and Mapping of Collective Perceptions of Technological Risk: The Case of the Second Nuclear Power Plant in Taiwan," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 668-683, April.
    5. Agustin Robles Morua & Kathleen E. Halvorsen & Alex S. Mayer, 2011. "Waterborne Disease‐Related Risk Perceptions in the Sonora River Basin, Mexico," Risk Analysis, John Wiley & Sons, vol. 31(5), pages 866-878, May.
    6. Weina Qu & Hongli Sun & Yan Ge, 2021. "The effects of trait anxiety and the big five personality traits on self-driving car acceptance," Transportation, Springer, vol. 48(5), pages 2663-2679, October.
    7. John D. Graham & John A. Rupp & Olga Schenk, 2015. "Unconventional Gas Development in the USA: Exploring the Risk Perception Issues," Risk Analysis, John Wiley & Sons, vol. 35(10), pages 1770-1788, October.
    8. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    9. Liu, Peng & Xu, Zhigang & Zhao, Xiangmo, 2019. "Road tests of self-driving vehicles: Affective and cognitive pathways in acceptance formation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 354-369.
    10. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Wang, Fei & Zhang, Zhentai & Lin, Shoufu, 2023. "Purchase intention of Autonomous vehicles and industrial Policies: Evidence from a national survey in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    12. Aven, Terje, 2018. "How the integration of System 1-System 2 thinking and recent risk perspectives can improve risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 237-244.
    13. Jamie K. Wardman, 2008. "The Constitution of Risk Communication in Advanced Liberal Societies," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1619-1637, December.
    14. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    15. P. Marijn Poortvliet & Anne Marike Lokhorst, 2016. "The Key Role of Experiential Uncertainty when Dealing with Risks: Its Relationships with Demand for Regulation and Institutional Trust," Risk Analysis, John Wiley & Sons, vol. 36(8), pages 1615-1629, August.
    16. Martina Raue & Lisa A. D'Ambrosio & Carley Ward & Chaiwoo Lee & Claire Jacquillat & Joseph F. Coughlin, 2019. "The Influence of Feelings While Driving Regular Cars on the Perception and Acceptance of Self‐Driving Cars," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 358-374, February.
    17. Kenneth Pettersen Gould, 2021. "Organizational Risk: “Muddling Through” 40 Years of Research," Risk Analysis, John Wiley & Sons, vol. 41(3), pages 456-465, March.
    18. Christopher Kohl & Marlene Knigge & Galina Baader & Markus Böhm & Helmut Krcmar, 2018. "Anticipating acceptance of emerging technologies using twitter: the case of self-driving cars," Journal of Business Economics, Springer, vol. 88(5), pages 617-642, July.
    19. Hemesath, Sebastian & Tepe, Markus, 2023. "Framing the approval to test self-driving cars on public roads. The effect of safety and competitiveness on citizens' agreement," Technology in Society, Elsevier, vol. 72(C).
    20. Reece A. Clothier & Dominique A. Greer & Duncan G. Greer & Amisha M. Mehta, 2015. "Risk Perception and the Public Acceptance of Drones," Risk Analysis, John Wiley & Sons, vol. 35(6), pages 1167-1183, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:2:p:342-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.