IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i5p1353-1363.html
   My bibliography  Save this article

M-estimation for the partially linear regression model under monotonic constraints

Author

Listed:
  • Du, Jiang
  • Sun, Zhimeng
  • Xie, Tianfa

Abstract

In this paper, we study M-estimation for the partially linear model under monotonic constraints. We use monotone B-splines to approximate the monotone nonparametric function. We show the large sample properties of the resulting estimators. The proposed estimator of parameter part is root-n consistent, and asymptotically normal and the estimator for the nonparametric component achieves the optimal convergence rate. A simulation study is conducted to evaluate the finite sample performance of the method. The proposed procedure is illustrated by an air pollution study.

Suggested Citation

  • Du, Jiang & Sun, Zhimeng & Xie, Tianfa, 2013. "M-estimation for the partially linear regression model under monotonic constraints," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1353-1363.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:5:p:1353-1363
    DOI: 10.1016/j.spl.2013.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715213000072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Minggen & Zhang, Ying & Huang, Jian, 2009. "Semiparametric Estimation Methods for Panel Count Data Using Monotone B-Splines," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1060-1070.
    2. Minggen Lu & Ying Zhang & Jian Huang, 2007. "Estimation of the mean function with panel count data using monotone polynomial splines," Biometrika, Biometrika Trust, vol. 94(3), pages 705-718.
    3. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    4. He, Xuming & Fung, Wing K. & Zhu, Zhongyi, 2005. "Robust Estimation in Generalized Partial Linear Models for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1176-1184, December.
    5. Arcones, Miguel A., 1996. "The Bahadur-Kiefer Representation of Lp Regression Estimators," Econometric Theory, Cambridge University Press, vol. 12(2), pages 257-283, June.
    6. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    7. Sun, Zhimeng & Zhang, Zhongzhan, 2013. "Semiparametric analysis of additive isotonic errors-in-variables regression models," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 100-114.
    8. Carroll, Raymond J. & Delaigle, Aurore & Hall, Peter, 2011. "Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 191-202.
    9. Zeckhauser, Richard & Thompson, Mark, 1970. "Linear Regression with Non-Normal Error Terms," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 280-286, August.
    10. Xuming He, 2002. "Estimation in a semiparametric model for longitudinal data with unspecified dependence structure," Biometrika, Biometrika Trust, vol. 89(3), pages 579-590, August.
    11. Lu, Minggen, 2010. "Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2528-2542, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    2. Du, Jiang & Zhang, Zhongzhan & Xie, Tianfa, 2018. "A weighted M-estimator for linear regression models with randomly truncated data," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 90-94.
    3. Minggen Lu, 2015. "Spline estimation of generalised monotonic regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 19-39, March.
    4. He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
    5. Lin, Fangzheng & Tang, Yanlin & Zhu, Zhongyi, 2020. "Weighted quantile regression in varying-coefficient model with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    6. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    7. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    8. Minggen Lu & Dana Loomis, 2013. "Spline-based semiparametric estimation of partially linear Poisson regression with single-index models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 905-922, December.
    9. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    10. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Adam Maidman & Lan Wang, 2018. "New semiparametric method for predicting high‐cost patients," Biometrics, The International Biometric Society, vol. 74(3), pages 1104-1111, September.
    12. Victor Chernozhukov & Roberto Rigobon & Thomas M. Stoker, 2010. "Set identification and sensitivity analysis with Tobin regressors," Quantitative Economics, Econometric Society, vol. 1(2), pages 255-277, November.
    13. Zheng, Shuzhuan & Liu, Rong & Yang, Lijian & Härdle, Wolfgang Karl, 2014. "Simultaneous confidence corridors and variable selection for generalized additive models," SFB 649 Discussion Papers 2014-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    15. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    16. Lu, Minggen, 2010. "Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2528-2542, November.
    17. Park, Seyoung & Lee, Eun Ryung, 2021. "Hypothesis testing of varying coefficients for regional quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    18. Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
    19. Guo You Qin & Zhong Yi Zhu, 2009. "Robustified Maximum Likelihood Estimation in Generalized Partial Linear Mixed Model for Longitudinal Data," Biometrics, The International Biometric Society, vol. 65(1), pages 52-59, March.
    20. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    21. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    22. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    23. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 2017. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 439-466, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:5:p:1353-1363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.