IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v73y2000i1p120-135.html
   My bibliography  Save this article

On Parameters of Increasing Dimensions

Author

Listed:
  • He, Xuming
  • Shao, Qi-Man

Abstract

In statistical analyses the complexity of a chosen model is often related to the size of available data. One important question is whether the asymptotic distribution of the parameter estimates normally derived by taking the sample size to infinity for a fixed number of parameters would remain valid if the number of parameters in the model actually increases with the sample size. A number of authors have addressed this question for the linear models. The component-wise asymptotic normality of the parameter estimate remains valid if the dimension of the parameter space grows more slowly than some root of the sample size. In this paper, we consider M-estimators of general parametric models. Our results apply to not only linear regression but also other estimation problems such as multivariate location and generalized linear models. Examples are given to illustrate the applications in different settings.

Suggested Citation

  • He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
  • Handle: RePEc:eee:jmvana:v:73:y:2000:i:1:p:120-135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91873-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z. D. & Wu, Y., 1994. "Limiting Behavior of M-Estimators of Regression Coefficients in High Dimensional Linear Models I. Scale Dependent Case," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 211-239, November.
    2. Bai, Z. D. & Wu, Y., 1994. "Limiting Behavior of M-Estimators of Regression-Coefficients in High Dimensional Linear Models II. Scale-Invariant Case," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 240-251, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    2. Ding, Hao & Wang, Zhanfeng & Wu, Yaohua, 2017. "Tobit regression model with parameters of increasing dimensions," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 1-7.
    3. Yingying Jiang & Fuming Lin & Yong Zhou, 2021. "The kth power expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 83-113, February.
    4. Ioannis Kalogridis, 2022. "Asymptotics for M-type smoothing splines with non-smooth objective functions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 373-389, June.
    5. Miaomiao Wang & Xinyu Zhang & Alan T. K. Wan & Kang You & Guohua Zou, 2023. "Jackknife model averaging for high‐dimensional quantile regression," Biometrics, The International Biometric Society, vol. 79(1), pages 178-189, March.
    6. Zhou, Ping & Yu, Zhen & Ma, Jingyi & Tian, Maozai & Fan, Ye, 2021. "Communication-efficient distributed estimator for generalized linear models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    7. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    8. Kalogridis, Ioannis & Van Aelst, Stefan, 2024. "Robust penalized spline estimation with difference penalties," Econometrics and Statistics, Elsevier, vol. 29(C), pages 169-188.
    9. Zhijie Xiao & Roger Koenker, 2009. "Conditional Quantile Estimation for GARCH Models," Boston College Working Papers in Economics 725, Boston College Department of Economics.
    10. Ding, Hao & Qin, Shanshan & Wu, Yuehua & Wu, Yaohua, 2021. "Asymptotic properties on high-dimensional multivariate regression M-estimation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:73:y:2000:i:1:p:120-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.