IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i2d10.1007_s00180-018-0802-2.html
   My bibliography  Save this article

A lack-of-fit test for generalized linear models via single-index techniques

Author

Listed:
  • Chin-Shang Li

    (University of California)

  • Minggen Lu

    (University of Nevada)

Abstract

A generalized partially linear single-index model (GPLSIM) is proposed in which the unknown smooth function of single index is approximated by a spline function that can be expressed as a linear combination of B-spline basis functions. The regression coefficients and the unknown smooth function are estimated simultaneously via a modified Fisher-scoring method. It can be shown that the estimators of regression parameters are asymptotically normally distributed. The asymptotic covariance matrix of the estimators can be estimated directly and consistently by using the least-squares method. As an application, the proposed GPLSIM can be employed to assess the lack of fit of a postulated generalized linear model (GLM) based on the comparison of the goodness of fit of the GPLSIM and postulated GLM to construct a likelihood ratio test. An extensive simulation study is conducted to examine the finite-sample performance of the likelihood ratio test. The practicality of the proposed methodology is illustrated with a real-life data set from a study of nesting horseshoe crabs.

Suggested Citation

  • Chin-Shang Li & Minggen Lu, 2018. "A lack-of-fit test for generalized linear models via single-index techniques," Computational Statistics, Springer, vol. 33(2), pages 731-756, June.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:2:d:10.1007_s00180-018-0802-2
    DOI: 10.1007/s00180-018-0802-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0802-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0802-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    2. Lu, Minggen & Zhang, Ying & Huang, Jian, 2009. "Semiparametric Estimation Methods for Panel Count Data Using Monotone B-Splines," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1060-1070.
    3. Minggen Lu & Ying Zhang & Jian Huang, 2007. "Estimation of the mean function with panel count data using monotone polynomial splines," Biometrika, Biometrika Trust, vol. 94(3), pages 705-718.
    4. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    5. Anne B. Koehler & Emily S. Murphree, 1988. "A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(2), pages 187-195, June.
    6. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    7. Yingcun Xia, 2009. "Model checking in regression via dimension reduction," Biometrika, Biometrika Trust, vol. 96(1), pages 133-148.
    8. Delecroix, Michel & Härdle, Wolfgang & Hristache, Marian, 2003. "Efficient estimation in conditional single-index regression," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 213-226, August.
    9. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
    10. Jianhua Z. Huang & Linxu Liu, 2006. "Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form," Biometrics, The International Biometric Society, vol. 62(3), pages 793-802, September.
    11. Sun, Jie & Kopciuk, Karen A. & Lu, Xuewen, 2008. "Polynomial spline estimation of partially linear single-index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 176-188, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustapha Rachdi & Mohamed Alahiane & Idir Ouassou & Abdelaziz Alahiane & Lahoucine Hobbad, 2024. "Cross-Validated Functional Generalized Partially Linear Single-Functional Index Model," Mathematics, MDPI, vol. 12(17), pages 1-22, August.
    2. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2022. "High-Dimensional Statistics: Non-Parametric Generalized Functional Partially Linear Single-Index Model," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
    3. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2021. "Partially Linear Generalized Single Index Models for Functional Data (PLGSIMF)," Stats, MDPI, vol. 4(4), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minggen Lu & Dana Loomis, 2013. "Spline-based semiparametric estimation of partially linear Poisson regression with single-index models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 905-922, December.
    2. Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
    3. Shang, Shulian & Liu, Mengling & Zeleniuch-Jacquotte, Anne & Clendenen, Tess V. & Krogh, Vittorio & Hallmans, Goran & Lu, Wenbin, 2013. "Partially linear single index Cox regression model in nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 199-212.
    4. Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
    5. Catalina Bolancé & Ricardo Cao & Montserrat Guillen, 2018. "“Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data”," IREA Working Papers 201829, University of Barcelona, Research Institute of Applied Economics, revised Dec 2018.
    6. Andrés Alonso & Ana Sipols & Silvia Quintas, 2013. "A single-index model procedure for interpolation intervals in time series," Computational Statistics, Springer, vol. 28(4), pages 1463-1484, August.
    7. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    8. Lu, Xuewen, 2010. "Asymptotic distributions of two "synthetic data" estimators for censored single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 999-1015, April.
    9. Yukitoshi Matsushita & Taisuke Otsu, 2017. "Likelihood inference on semiparametric models: Average derivative and treatment effect," STICERD - Econometrics Paper Series 592, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Juan Carlos Escanciano & Kyungchul Song, 2007. "Asymptotically Optimal Tests for Single-Index Restrictions with a Focus on Average Partial Effects," PIER Working Paper Archive 07-005, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    12. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    13. Nishiyama, Y., 2004. "Minimum normal approximation error bandwidth selection for averaged derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 53-61.
    14. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    15. Lin, Wei & Kulasekera, K.B., 2010. "Testing the equality of linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1156-1167, May.
    16. Li, Weiyu & Patilea, Valentin, 2017. "A new minimum contrast approach for inference in single-index models," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 47-59.
    17. Chiang, Chin-Tsang & Huang, Ming-Yueh, 2012. "New estimation and inference procedures for a single-index conditional distribution model," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 271-285.
    18. Marian Hristache, 2002. "Are Efficient Estimators in Single-Index Models Really Efficient? A Computational Discussion," Computational Statistics, Springer, vol. 17(4), pages 453-464, December.
    19. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    20. Wanrong Liu & Xuewen Lu, 2011. "Empirical likelihood for density-weighted average derivatives," Statistical Papers, Springer, vol. 52(2), pages 391-412, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:2:d:10.1007_s00180-018-0802-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.