IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i1p100-114.html
   My bibliography  Save this article

Semiparametric analysis of additive isotonic errors-in-variables regression models

Author

Listed:
  • Sun, Zhimeng
  • Zhang, Zhongzhan

Abstract

We consider the estimation of a semiparametric additive isotonic regression model with error-prone covariates. We show the limiting distributions of the proposed estimators of the parametric component as well as the functional component. A simulation study is carried out to investigate the performance of the proposed estimators.

Suggested Citation

  • Sun, Zhimeng & Zhang, Zhongzhan, 2013. "Semiparametric analysis of additive isotonic errors-in-variables regression models," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 100-114.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:100-114
    DOI: 10.1016/j.spl.2012.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212003331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    2. Hengjian Cui & Efang Kong, 2006. "Empirical Likelihood Confidence Region for Parameters in Semi‐linear Errors‐in‐Variables Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 153-168, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Jiang & Sun, Zhimeng & Xie, Tianfa, 2013. "M-estimation for the partially linear regression model under monotonic constraints," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1353-1363.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Li & Chen, Xia, 2014. "Empirical likelihood for partly linear models with errors in all variables," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 275-288.
    2. Guo-Liang Fan & Han-Ying Liang & Jiang-Feng Wang, 2013. "Empirical likelihood for heteroscedastic partially linear errors-in-variables model with α-mixing errors," Statistical Papers, Springer, vol. 54(1), pages 85-112, February.
    3. Huang, Zhensheng, 2012. "Empirical likelihood for the parametric part in partially linear errors-in-function models," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 63-66.
    4. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    5. Wei Yu & Cuizhen Niu & Wangli Xu, 2014. "An empirical likelihood inference for the coefficient difference of a two-sample linear model with missing response data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 675-693, July.
    6. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    7. Zhang, Junhua & Feng, Sanying & Li, Gaorong & Lian, Heng, 2011. "Empirical likelihood inference for partially linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 113(2), pages 165-167.
    8. Otsu, Taisuke, 2007. "Penalized empirical likelihood estimation of semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1923-1954, November.
    9. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2013. "Testing the linear errors-in-variables model with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 875-884.
    10. Qin, Yongsong & Li, Ling & Lei, Qingzhu, 2009. "Empirical likelihood for linear regression models with missing responses," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1391-1396, June.
    11. He, Bang-Qiang & Hong, Xing-Jian & Fan, Guo-Liang, 2017. "Block empirical likelihood for partially linear panel data models with fixed effects," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 128-138.
    12. Ruidong Han & Xinghui Wang & Shuhe Hu, 2018. "Asymptotics of the weighted least squares estimation for AR(1) processes with applications to confidence intervals," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 479-490, August.
    13. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    14. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.
    15. You, Jinhong & Zhou, Yong, 2006. "Empirical likelihood for semiparametric varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 412-422, February.
    16. Jinhong You & Xian Zhou & Lixing Zhu & Bin Zhou, 2011. "Weighted denoised minimum distance estimation in a regression model with autocorrelated measurement errors," Statistical Papers, Springer, vol. 52(2), pages 263-286, May.
    17. Guozhi Hu & Weihu Cheng & Jie Zeng, 2023. "Optimal Model Averaging for Semiparametric Partially Linear Models with Censored Data," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    18. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    19. You, Jinhong & Chen, Gemai & Zhou, Yong, 2007. "Statistical inference of partially linear regression models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1539-1557, September.
    20. Bianco, Ana M. & Spano, Paula M., 2017. "Robust estimation in partially linear errors-in-variables models," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 46-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:100-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.